Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
You can solve it using an arithmetic sequence.
The nth term of the sequence is equal to the number of penguins in the nth row. It's equal to the number of the row.
[tex]a_n=n[/tex]
There was one penguin in the first row.
[tex]a_1=1[/tex]
The sum of the sequence:
[tex]S=\frac{n(a_1+a_n)}{2}=\frac{n(1+n)}{2}=\frac{n+n^2}{2}[/tex]
There were 250 penguins - set the sum equal to 250 and solve:
[tex]\frac{n+n^2}{2}=250 \ \ \ |\times 2 \\ n+n^2=500 \\ n^2+n-500=0 \\ \\ a=1 \\ b=1 \\ c=-500 \\ b^2-4ac=1^2-4 \times 1 \times (-500)=1+2000=2001 \\ \\ n=\frac{-b \pm \sqrt{b^2-4ac}}{2a}=\frac{-1 \pm \sqrt{2001}}{2 \times 1}=\frac{-1 \pm \sqrt{2001}}{2} \\ n=\frac{-1 -\sqrt{2001}}{2} \ \lor \ n=\frac{-1+\sqrt{2001}}{2} \\ n \approx -22.87 \ \lor \ n \approx 21.87[/tex]
The number of rows can't be a negative number so n≈21.87.
So, there were 21 full rows and one not full.
Calculate the number of penguins in 21 rows:
[tex]S_{21}=\frac{21+21^2}{2}=\frac{21+441}{2}=\frac{462}{2}=231 \\ \\ 250-231=19[/tex]
There were 19 penguins in the last row.
The answer:
There were 22 rows of penguins. The last row wasn't full, it contained 19 penguins.
The nth term of the sequence is equal to the number of penguins in the nth row. It's equal to the number of the row.
[tex]a_n=n[/tex]
There was one penguin in the first row.
[tex]a_1=1[/tex]
The sum of the sequence:
[tex]S=\frac{n(a_1+a_n)}{2}=\frac{n(1+n)}{2}=\frac{n+n^2}{2}[/tex]
There were 250 penguins - set the sum equal to 250 and solve:
[tex]\frac{n+n^2}{2}=250 \ \ \ |\times 2 \\ n+n^2=500 \\ n^2+n-500=0 \\ \\ a=1 \\ b=1 \\ c=-500 \\ b^2-4ac=1^2-4 \times 1 \times (-500)=1+2000=2001 \\ \\ n=\frac{-b \pm \sqrt{b^2-4ac}}{2a}=\frac{-1 \pm \sqrt{2001}}{2 \times 1}=\frac{-1 \pm \sqrt{2001}}{2} \\ n=\frac{-1 -\sqrt{2001}}{2} \ \lor \ n=\frac{-1+\sqrt{2001}}{2} \\ n \approx -22.87 \ \lor \ n \approx 21.87[/tex]
The number of rows can't be a negative number so n≈21.87.
So, there were 21 full rows and one not full.
Calculate the number of penguins in 21 rows:
[tex]S_{21}=\frac{21+21^2}{2}=\frac{21+441}{2}=\frac{462}{2}=231 \\ \\ 250-231=19[/tex]
There were 19 penguins in the last row.
The answer:
There were 22 rows of penguins. The last row wasn't full, it contained 19 penguins.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.