Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
You can solve it using an arithmetic sequence.
The nth term of the sequence is equal to the number of penguins in the nth row. It's equal to the number of the row.
[tex]a_n=n[/tex]
There was one penguin in the first row.
[tex]a_1=1[/tex]
The sum of the sequence:
[tex]S=\frac{n(a_1+a_n)}{2}=\frac{n(1+n)}{2}=\frac{n+n^2}{2}[/tex]
There were 250 penguins - set the sum equal to 250 and solve:
[tex]\frac{n+n^2}{2}=250 \ \ \ |\times 2 \\ n+n^2=500 \\ n^2+n-500=0 \\ \\ a=1 \\ b=1 \\ c=-500 \\ b^2-4ac=1^2-4 \times 1 \times (-500)=1+2000=2001 \\ \\ n=\frac{-b \pm \sqrt{b^2-4ac}}{2a}=\frac{-1 \pm \sqrt{2001}}{2 \times 1}=\frac{-1 \pm \sqrt{2001}}{2} \\ n=\frac{-1 -\sqrt{2001}}{2} \ \lor \ n=\frac{-1+\sqrt{2001}}{2} \\ n \approx -22.87 \ \lor \ n \approx 21.87[/tex]
The number of rows can't be a negative number so n≈21.87.
So, there were 21 full rows and one not full.
Calculate the number of penguins in 21 rows:
[tex]S_{21}=\frac{21+21^2}{2}=\frac{21+441}{2}=\frac{462}{2}=231 \\ \\ 250-231=19[/tex]
There were 19 penguins in the last row.
The answer:
There were 22 rows of penguins. The last row wasn't full, it contained 19 penguins.
The nth term of the sequence is equal to the number of penguins in the nth row. It's equal to the number of the row.
[tex]a_n=n[/tex]
There was one penguin in the first row.
[tex]a_1=1[/tex]
The sum of the sequence:
[tex]S=\frac{n(a_1+a_n)}{2}=\frac{n(1+n)}{2}=\frac{n+n^2}{2}[/tex]
There were 250 penguins - set the sum equal to 250 and solve:
[tex]\frac{n+n^2}{2}=250 \ \ \ |\times 2 \\ n+n^2=500 \\ n^2+n-500=0 \\ \\ a=1 \\ b=1 \\ c=-500 \\ b^2-4ac=1^2-4 \times 1 \times (-500)=1+2000=2001 \\ \\ n=\frac{-b \pm \sqrt{b^2-4ac}}{2a}=\frac{-1 \pm \sqrt{2001}}{2 \times 1}=\frac{-1 \pm \sqrt{2001}}{2} \\ n=\frac{-1 -\sqrt{2001}}{2} \ \lor \ n=\frac{-1+\sqrt{2001}}{2} \\ n \approx -22.87 \ \lor \ n \approx 21.87[/tex]
The number of rows can't be a negative number so n≈21.87.
So, there were 21 full rows and one not full.
Calculate the number of penguins in 21 rows:
[tex]S_{21}=\frac{21+21^2}{2}=\frac{21+441}{2}=\frac{462}{2}=231 \\ \\ 250-231=19[/tex]
There were 19 penguins in the last row.
The answer:
There were 22 rows of penguins. The last row wasn't full, it contained 19 penguins.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.