Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

1) Find the inverse function of f(x)=1/2x+3
2)Use composition to verify that they are inverse relations?
3) f^ Domain : Range:
4) f^-1 Domain : Range:


Sagot :

 y = 1/2x + 3
change x and y

x = 1/2y + 3
now find the value of y and that is inverse function 

x - 3 =1/2 y
y = 2x- 6
 
f-(x) = 2x - 6


for both domain : ( - ∞ , + ∞ )

range f (x) : ( - ∞ , + ∞ )  - { 0 }
range f-(x) :( -∞ , +∞)
To find the inverse function you need to change [tex]f(x)[/tex] (call it [tex]y[/tex]) and [tex]x[/tex], then solve for [tex]y[/tex]:

[tex]y = \frac{1}{2}x+3 \\ x = \frac{1}{2}y + 3 \\ x - 3 = \frac{1}{2}y \\ 2x-6 = y[/tex]

So now you have [tex]f^{-1}(x) = 2x-6[/tex].

Composition to prove inverse relation: [tex]f \circ f^{-1} (x) = x[/tex]:

[tex]f(f^{-1}(x)) = \frac{1}{2}(2x-6)+3 = x - 3 + 3 = x \square[/tex]

Domain and Range of both functions is Real numbers since they are both linear equations.