Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
y = 1/2x + 3
change x and y
x = 1/2y + 3
now find the value of y and that is inverse function
x - 3 =1/2 y
y = 2x- 6
f-(x) = 2x - 6
for both domain : ( - ∞ , + ∞ )
range f (x) : ( - ∞ , + ∞ ) - { 0 }
range f-(x) :( -∞ , +∞)
change x and y
x = 1/2y + 3
now find the value of y and that is inverse function
x - 3 =1/2 y
y = 2x- 6
f-(x) = 2x - 6
for both domain : ( - ∞ , + ∞ )
range f (x) : ( - ∞ , + ∞ ) - { 0 }
range f-(x) :( -∞ , +∞)
To find the inverse function you need to change [tex]f(x)[/tex] (call it [tex]y[/tex]) and [tex]x[/tex], then solve for [tex]y[/tex]:
[tex]y = \frac{1}{2}x+3 \\ x = \frac{1}{2}y + 3 \\ x - 3 = \frac{1}{2}y \\ 2x-6 = y[/tex]
So now you have [tex]f^{-1}(x) = 2x-6[/tex].
Composition to prove inverse relation: [tex]f \circ f^{-1} (x) = x[/tex]:
[tex]f(f^{-1}(x)) = \frac{1}{2}(2x-6)+3 = x - 3 + 3 = x \square[/tex]
Domain and Range of both functions is Real numbers since they are both linear equations.
[tex]y = \frac{1}{2}x+3 \\ x = \frac{1}{2}y + 3 \\ x - 3 = \frac{1}{2}y \\ 2x-6 = y[/tex]
So now you have [tex]f^{-1}(x) = 2x-6[/tex].
Composition to prove inverse relation: [tex]f \circ f^{-1} (x) = x[/tex]:
[tex]f(f^{-1}(x)) = \frac{1}{2}(2x-6)+3 = x - 3 + 3 = x \square[/tex]
Domain and Range of both functions is Real numbers since they are both linear equations.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.