Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

the length of a rectangle is 3cm more than twice the width. The area of the rectangle is 90cm^2. Find the dimensions of the rectangle.

Sagot :

logo88
A=l*w
if the length is 3cm more than the width let the length be x+3
and let the width be x
since the area=90cm^2
90=(x+3) *x
90=x(x+3)
90=x²+3x
x²+3x-90=0
x=(-3+ or - √369) /2
x= 8.105 and -11.105
but the dimensions must be positive so they are 8.105 and 11.105 (they are rounded to 3 decimal places, if you don't want them rounded look at them in the
calculator. 
Width= w 
Length= 2w+3
(Length)(Width)= Area

w(2w+3)
2w^2+3w= 90
2w^2+3w-90= 0
(2w+15)(w-6)=0
This can be broken down into two different equations:
2w+15=0 ---------------> w= -15/2
w-6=0 -------------------> w= 6

Since w cannot be negative, the width is 6 cm, and the length is 15 cm. 

This can also be solved using the quadratic formula:
-b±√[b^2-4(a)(c)]
            2a

Start with 2w^2+3w-90= 0
a= 2
b= 3
c= -90
-3±√[9-4(2)(-90)]
           4
-3±√(729)
     4
-3±27
   4
Therefore, the two answers are 6, and -30/4, AKA -15/2.
Once again, 6 is the only one that works because it is positive, so when plugged in, the length is 15, and the width is 6.