Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
A=l*w
if the length is 3cm more than the width let the length be x+3
and let the width be x
since the area=90cm^2
90=(x+3) *x
90=x(x+3)
90=x²+3x
x²+3x-90=0
x=(-3+ or - √369) /2
x= 8.105 and -11.105
but the dimensions must be positive so they are 8.105 and 11.105 (they are rounded to 3 decimal places, if you don't want them rounded look at them in the
calculator.
if the length is 3cm more than the width let the length be x+3
and let the width be x
since the area=90cm^2
90=(x+3) *x
90=x(x+3)
90=x²+3x
x²+3x-90=0
x=(-3+ or - √369) /2
x= 8.105 and -11.105
but the dimensions must be positive so they are 8.105 and 11.105 (they are rounded to 3 decimal places, if you don't want them rounded look at them in the
calculator.
Width= w
Length= 2w+3
(Length)(Width)= Area
w(2w+3)
2w^2+3w= 90
2w^2+3w-90= 0
(2w+15)(w-6)=0
This can be broken down into two different equations:
2w+15=0 ---------------> w= -15/2
w-6=0 -------------------> w= 6
Since w cannot be negative, the width is 6 cm, and the length is 15 cm.
This can also be solved using the quadratic formula:
-b±√[b^2-4(a)(c)]
2a
Start with 2w^2+3w-90= 0
a= 2
b= 3
c= -90
-3±√[9-4(2)(-90)]
4
-3±√(729)
4
-3±27
4
Therefore, the two answers are 6, and -30/4, AKA -15/2.
Once again, 6 is the only one that works because it is positive, so when plugged in, the length is 15, and the width is 6.
Length= 2w+3
(Length)(Width)= Area
w(2w+3)
2w^2+3w= 90
2w^2+3w-90= 0
(2w+15)(w-6)=0
This can be broken down into two different equations:
2w+15=0 ---------------> w= -15/2
w-6=0 -------------------> w= 6
Since w cannot be negative, the width is 6 cm, and the length is 15 cm.
This can also be solved using the quadratic formula:
-b±√[b^2-4(a)(c)]
2a
Start with 2w^2+3w-90= 0
a= 2
b= 3
c= -90
-3±√[9-4(2)(-90)]
4
-3±√(729)
4
-3±27
4
Therefore, the two answers are 6, and -30/4, AKA -15/2.
Once again, 6 is the only one that works because it is positive, so when plugged in, the length is 15, and the width is 6.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.