Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Let be the integers a,b,c with

[tex]a^2-4b=c^2[/tex]

To be shown that the number [tex]a^2-2b[/tex] can be written as a sum of 2 perfect squares.


Sagot :

[tex]{ a }^{ 2 }-4b={ c }^{ 2 }\\ \\ { a }^{ 2 }-4b+2b={ c }^{ 2 }+2b\\ \\ { a }^{ 2 }-2b={ c }^{ 2 }+{ \left( \sqrt { 2b } \right) }^{ 2 }[/tex]

[tex]b={ 2 }^{ n }\\ \\ n>0[/tex]

(n) is the set of odd natural numbers greater than 0.
a^2 - 4b = c^2 <=> a^2 - c^2 = 4b <=> ( a + c )( a - c ) = 4b, cu a, b, c nr. intregi ;
Avem doua posibilitati :
a) a = 2x si b = 2y;
Atunci ( a + c )( a - c ) = 4b <=> x^2 - y^2 = b;
Relatia  a^2 -2b devine 2x^2 +2y^2 = ([tex] \sqrt{2} x[/tex])^2 + ([tex] \sqrt{2} y[/tex])^2, adica suma a doua patrate perfecte ;

b) a = 2x + 1 si b = 2y + 1 ;
In mod analog. obtii ca x^2 - y^2 + x - y = b;
si, dupa ce prelucrezi, ai ca a^2 - 2b = [[tex] \sqrt{2} ( x + 1 / 2 )[/tex]]^2 + [][tex] \sqrt{2} ( y + 1 / 2 )[/tex]^2, adica, suma a doua patrate perfecte .

Bafta!


Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.