Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The geometric series that represents 0.4444... as a fraction is: 4/6 * [k=0, ∞]∑1/6^k
Answer: It can be expressed as
[tex]\frac{4}{10}+\frac{4}{100}+\frac{4}{1000}+........[/tex]
Step-by-step explanation:
Since we have given that 0.44444.......
We need geometric series that represents as a fraction.
so, it can be written as
0.4+0.04+0.004+0.0004...............
But as we are required to write it as a fraction , So, it becomes,
[tex]\frac{4}{10}+\frac{4}{100}+\frac{4}{1000}+\frac{4}{10000}............[/tex]
and it is a geometric series.
Because it has first term = a = [tex]\frac{4}{10}[/tex]
and common ratio = r = [tex]\frac{a_2}{a_1}=\frac{\frac{4}{100}}{\frac{4}{10}}=\frac{1}{10}[/tex]
Hence, it can be expressed as
[tex]\frac{4}{10}+\frac{4}{100}+\frac{4}{1000}+........[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.