Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
The volume of balloon at [tex]46\text{ }^{\circ}\text{C}[/tex] is [tex]\boxed{576.5\text{ mL}}[/tex].
Further explanation:
Charles’s law:
This law describes volume-temperature relationship of gases at constant amount of gas and pressure. According to this law, volume occupied by a fixed amount of a gas is directly proportional to its absolute temperature, provided pressure and amount of gas is kept constant.
Mathematical expression of Charles’s law:
[tex]\text{V}\propto\text{T}[/tex]
Here,
V is volume occupied by the fixed quantity of gas.
T is temperature of gas.
The relationship can also be expressed as follows:
[tex]\dfrac{\text{V}}{\text{T}}=\text{constant}[/tex] [P and n are constant]
Or it can also be expressed as follows:
[tex]\dfrac{\text{V}_1}{\text{T}_1}=\dfrac{\text{V}_2}{\text{T}_2}[/tex] ...... (1)
Here,
[tex]\text{V}_1[/tex] is initial volume of gas.
[tex]\text{V}_2[/tex] is final volume of gas.
[tex]\text{T}_1[/tex]is initial temperature of gas.
[tex]\text{T}_2[/tex] is final temperature of gas.
Rearrange equation (1) for [tex]\text{V}_2[/tex] .
[tex]\text{V}_2=\dfrac{\text{V}_1\text{T}_2}{\text{T}_1}[/tex] ...... (2)
The value of [tex]\text{T}_1[/tex] can be calculated as follows:
[tex]\begin{aligned}\text{T}_1&=\left(23+273.15\right)\text{K}\\&=296.15\text{ K}\end{aligned}[/tex]
The value of [tex]\text{T}_2[/tex] can be calculated as follows:
[tex]\begin{aligned}\text{T}_2&=\left(46+273.15\right)\text{K}\\&=319.15\text{ K}\end{aligned}[/tex]
Substitute 296.15 K for [tex]\text{T}_1[/tex], 319.15 K for [tex]\text{T}_2[/tex] and 535 mL for [tex]\text{V}_1[/tex] in equation (2).
[tex]\begin{aligned}\text{V}_2&=\dfrac{\left(535\text{ mL}\right\left(319.15\text{ K}\right)}{\left(296.15\text{ K}\right)}\\&=576.5\text{ mL}\end{aligned}[/tex]
Therefore final volume of balloon comes out to be 576.5 mL.
Learn more:
1. Law of conservation of matter states: https://brainly.com/question/2190120
2. Calculation of volume of gas: https://brainly.com/question/3636135
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Ideal gas equation
Keywords: Charles’s law, volume, temperature, pressure, volume-temperature relationship, absolute temperature, 576.5 mL, 296.15 K, 319.15 K, 535 mL, T2, T1, V1, V2, 296.15 K, 319.15 K.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.