Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
1+179=180 2+178=180 3+177=180 4+176=180 5+175=180 6+174=180.............theres a lot of answers do u want every single one
Answer with explanation:
We have to find ordered pair (a,b) such that , a+b=180
→If there is no constraint on, a and b,that is ,which kind of numbers these are ,there will be infinite number of pairs.
→If we apply the constraint, a≥0, and b≥0 and, a and b are real numbers then also there are infinite number of pairs.
→If we apply the constraint, a≥0, and b≥0 and, a and b are rational numbers then also there are infinite number of pairs.
→But, if a and b are Positive integers ,and taking the constraint, a≥0, and b≥0, the number of pairs are:
Number of integer Points, on the line
a+b=180
1→→If , 0≤a≤90,then value of b will be 180≤b≤90.The pairs will be , {(0,180),(1,179),(2,178),..........(89,91) and (90,90).}
There are 91 pair in all.
2.→→And , if 0≤b≤90,then value of a will be 180≤a≤90.The pairs will be ,{(180,0),(179,1),(178,2),.......(91,89), and (90,90)}.
There are 91 pair in all.
But , the pair (90,90) is included in both the set that is equation 1 and 2 forming pairs.
So, total number of pairs = 91+91-1
=182-1
=181 pair in all.
So,→→ there are 181 pair in all (set of positive integers) having sum 180.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.