Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
A geometric series:
[tex]\sum^{\infty}_{i=1}=a_1 \times r^{i-1}[/tex]
It's convergent if |r|<1.
It's divergent if |r|≥1.
The sum can be found if it's a convergent series; it's equal to [tex]\frac{a_1}{1-r}[/tex].
3.
[tex]\sum^{\infty}_{i=1} 12 (\frac{3}{5})^{i-1} \\ \\ a_1=12 \\ r=\frac{3}{5} \\ \\ |r|<1 \hbox{ so it's convergent} \\ \\ \sum^{\infty}_{i=1} 12 (\frac{3}{5})^{i-1}=\frac{12}{1-\frac{3}{5}}=\frac{12}{\frac{5}{5}-\frac{3}{5}}=\frac{12}{\frac{2}{5}}=12 \times \frac{5}{2}=6 \times 5=30[/tex]
The answer is: This is a convergent geometric series. The sum is 30.
4.
[tex]\sum^{\infty}_{i=1} 15(4)^{i-1} \\ \\ a_1=15 \\ r=4 \\ \\ |r| \geq 1 \hbox{ so it's divergent}[/tex]
The answer is: This is a divergent geometric series. The sum cannot be found.
[tex]\sum^{\infty}_{i=1}=a_1 \times r^{i-1}[/tex]
It's convergent if |r|<1.
It's divergent if |r|≥1.
The sum can be found if it's a convergent series; it's equal to [tex]\frac{a_1}{1-r}[/tex].
3.
[tex]\sum^{\infty}_{i=1} 12 (\frac{3}{5})^{i-1} \\ \\ a_1=12 \\ r=\frac{3}{5} \\ \\ |r|<1 \hbox{ so it's convergent} \\ \\ \sum^{\infty}_{i=1} 12 (\frac{3}{5})^{i-1}=\frac{12}{1-\frac{3}{5}}=\frac{12}{\frac{5}{5}-\frac{3}{5}}=\frac{12}{\frac{2}{5}}=12 \times \frac{5}{2}=6 \times 5=30[/tex]
The answer is: This is a convergent geometric series. The sum is 30.
4.
[tex]\sum^{\infty}_{i=1} 15(4)^{i-1} \\ \\ a_1=15 \\ r=4 \\ \\ |r| \geq 1 \hbox{ so it's divergent}[/tex]
The answer is: This is a divergent geometric series. The sum cannot be found.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.