logo88
Answered

Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

21. find the volume of the solid of revolution formed if the area enclosed between the curves y=x² and y=(x-2)² is rotated about the x-axis using integration

Sagot :

What you need to do is get hold of the area underneath the curve y=x² from x=1 to x=0. You then spin this area 360 degrees about the x-axis and double the result as there is symmetry between y=x² and y=(x-2)².

Use the formula:

[tex]Volume=\int _{ a }^{ b }{ \pi { y }^{ 2 } } dx[/tex]

Ok, so let's solve the problem...

[tex]V=2\int _{ 0 }^{ 1 }{ \pi { x }^{ 4 } } dx\\ \\ =2{ \left[ \frac { \pi { x }^{ 4+1 } }{ 4+1 } \right] }_{ 0 }^{ 1 }[/tex]

[tex]\\ \\ =2{ \left[ \frac { \pi { x }^{ 5 } }{ 5 } \right] }_{ 0 }^{ 1 }\\ \\ =2\left\{ \left( \frac { \pi }{ 5 } \right) -\left( 0 \right) \right\} \\ \\ =\frac { 2 }{ 5 } \pi [/tex]

Answer:

[tex]\frac { 2 }{ 5 } \pi [/tex] units cubed.
View image Аноним