Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex]look\ at\ the\ picture\\\\Area=228\ in^2\\\\Area=2A_1+A_2+A_3+A_4\\\\2A_1=2\cdot\frac{6\cdot8}{2}=48\ (in^2)\\\\A_2=8H\\\\A_3=6H\\\\A_4=10H[/tex]
[tex]48+8H+6H+10H=228\\\\48+24H=228\ \ \ /-48\\\\24H=180\ \ \ /:24\\\\H=7.5\ (in)[/tex]
[tex]48+8H+6H+10H=228\\\\48+24H=228\ \ \ /-48\\\\24H=180\ \ \ /:24\\\\H=7.5\ (in)[/tex]
Answer:
The height of right triangular prism is 7.5 in.
Step-by-step explanation:
The base is a right triangle with a base height of 6 inches and a base length of 8 inches. The length of the third side of the base is 10 inches.
The area of a triangle is
[tex]A=\frac{1}{2}\tims base\times height[/tex]
[tex]A_1=\frac{1}{2}\tims 6\times 8=24[/tex]
Let the height of the prism be h.
Area of a rectangle is
[tex]A=length\times width[/tex]
[tex]A_2=6\times h=6h[/tex]
[tex]A_3=8\times h=8h[/tex]
[tex]A_4=10\times h=10h[/tex]
The surface area of a right triangular prism is
[tex]A=2\times \text{Area of base}+\text{Area of three rectangles}[/tex]
[tex]A=2\times (A_1)+A_2+A_3+A_4[/tex]
[tex]A=2\times (24)+6h+8h+10h[/tex]
[tex]A=48+24h[/tex]
The surface area of a right triangular prism is 228 square inches.
[tex]228=48+24h[/tex]
[tex]180=24h[/tex]
[tex]h=7.5[/tex]
Therefore the height of right triangular prism is 7.5 in.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.