Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
anti derivative of 4 is 4x
anti derivative of -x is -1/2 x^2
so y = 4x - (1/2)x^2 + C
(can't forget constants when doing anti derivatives xD)
is this what you need?
*edit
Anti-derivative of a Constant [just a number] becomes (constant)*x
for example integral of 5 = 5x + C
Then there is a Power Rule for integrals
integral of (x)^n = 1/(n+1) *(x)^(n+1) + C
for example: integral of x^2 = 1/(2+1) * (x)^(2+1) + C = (1/3)*x^3 + C
anti derivative of -x is -1/2 x^2
so y = 4x - (1/2)x^2 + C
(can't forget constants when doing anti derivatives xD)
is this what you need?
*edit
Anti-derivative of a Constant [just a number] becomes (constant)*x
for example integral of 5 = 5x + C
Then there is a Power Rule for integrals
integral of (x)^n = 1/(n+1) *(x)^(n+1) + C
for example: integral of x^2 = 1/(2+1) * (x)^(2+1) + C = (1/3)*x^3 + C
We have dy/dx = (4-x) dx which is a first order linear ODE
dy = (4-x) dx. Now integrating both sides we get:
y = 4x - 1/2 x^2 + C
which is the answer. Note we only wrote +c once since we can combine arbitrary constants under addition and subtraction with each other.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.