Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The area of a rectangle is length L times width W.
Area = L * W.
We are told that L = W + 25.
So if the area = L * W
We can substitute L with W + 25 to give us
6984 = L * W = (W + 25 ) * W = W^2 + 25W.
W^2 + 25W = 6984. We can turn this into a quadratic equation by removing 6984 from both sides
W^2 + 25W - 6984 = 0
To solve a quadratic ax^x + bx + c = 0 we use this formula
[tex](-b+/- \sqrt{-b^{2} -4ac})/2a [/tex]
In our quadratic a = 1, b=25, c=-6984
-b = -25
b2 - 4ac = 25*25 - 4 * 1 * -6984 = 625 + 27936 = 28561
SQRT(28561) = 169
So we have two answers (from the +/- in the quadratic solver)
(-b+169)/(2*1) = (-25+169)/2 = 144/2 = 72or(-b-169)/(2*1) = (-194)/2 = -97Since we can't have a negative length, 72 must be the value for W
If W is 72 then L = W + 25 = 97
We can now test this by saying A = L * W = 97 * 72 = 6984, the original area given.
Area = L * W.
We are told that L = W + 25.
So if the area = L * W
We can substitute L with W + 25 to give us
6984 = L * W = (W + 25 ) * W = W^2 + 25W.
W^2 + 25W = 6984. We can turn this into a quadratic equation by removing 6984 from both sides
W^2 + 25W - 6984 = 0
To solve a quadratic ax^x + bx + c = 0 we use this formula
[tex](-b+/- \sqrt{-b^{2} -4ac})/2a [/tex]
In our quadratic a = 1, b=25, c=-6984
-b = -25
b2 - 4ac = 25*25 - 4 * 1 * -6984 = 625 + 27936 = 28561
SQRT(28561) = 169
So we have two answers (from the +/- in the quadratic solver)
(-b+169)/(2*1) = (-25+169)/2 = 144/2 = 72or(-b-169)/(2*1) = (-194)/2 = -97Since we can't have a negative length, 72 must be the value for W
If W is 72 then L = W + 25 = 97
We can now test this by saying A = L * W = 97 * 72 = 6984, the original area given.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.