Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Let E stand for the set of all even natural numbers (so E={2,4,6,8,...} and O stand for the set of all odd natural numbers (So O={1,3,5,7,...}). Show that the sets E and O have the same cardinality by describing an explicit one-to-one correspondence between the two sets.

Sagot :

Dlesar
Cardinality is the number of elements in a set. Both of the sets E and O have infinite elements, but there are different types and sizes of infinity. Luckily, all you have to do to prove that two sets have the same cardinality is describe an explicit one-to-one correspondence between the two.
For odds and evens, this is a relatively easy thing to do - all odds are just one less than an even. So, the function that relates the two sets is
f(n) = n + 1
or, depending on how you write it,
E(n) = O(n) + 1
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.