Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Look down below for question:


Look Down Below For Question class=

Sagot :

Area of ABC : AB*AC/2

the maximum of the parabola is reached at x=-4/(2*(-1))=2 hence A is at (2,0) and B is at (2,(-2)^2+4*2+C)=(2,12+C)

C is the second root (x-intersect), which we can find :

determinant1 : D=16-4*(-1)*C=4(4+C) thus the second root is at x=[tex]\frac{-4-\sqrt{4(4+C)}}{-2}=2+\sqrt{4+C}[/tex]

Hence the area of the triangle is [tex]AB*AC/2=(4+C)*(2+\sqrt{4+C}-2)/2=(4+C)\sqrt{4+C}/2=32[/tex] hence [tex](4+C)\sqrt{4+C}=64[/tex] .

We remark that [tex]64=16*4=16*\sqrt{16}[/tex]

Hence 4+C=16 thus C=12

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.