Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
1) the weight of an object at Earth's surface is given by [tex]F=mg[/tex], where m is the mass of the object and [tex]g=9.81 m/s^2[/tex] is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is
[tex]F=mg=(2.2 kg)(9.81 m/s^2)=21.6 N[/tex]
2) On Mars, the value of the gravitational acceleration is different:[tex] g=3.7 m/s^2[/tex]. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth: [tex]F=mg=(2.2 kg)(3.7 m/s^2)=8.1 N[/tex]
3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:
[tex]g= \frac{F}{m}= \frac{ 19.6 N}{2.2 kg}=8.9 m/s^2[/tex]
4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:
[tex]g= \frac{F}{m} = \frac{11.55 N}{0.5 kg} =23.1 m/s^2[/tex]
5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as
[tex]g= \frac{F}{m} = \frac{0.3 N}{0.5 kg} =0.6 m/s^2[/tex]
6) On Earth, the gravity acceleration is [tex]g=9.81 m/s^2[/tex]. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
[tex]F=mg=(0.5 kg)(9.81 m/s^2)=4.9 N[/tex]
[tex]F=mg=(2.2 kg)(9.81 m/s^2)=21.6 N[/tex]
2) On Mars, the value of the gravitational acceleration is different:[tex] g=3.7 m/s^2[/tex]. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth: [tex]F=mg=(2.2 kg)(3.7 m/s^2)=8.1 N[/tex]
3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:
[tex]g= \frac{F}{m}= \frac{ 19.6 N}{2.2 kg}=8.9 m/s^2[/tex]
4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:
[tex]g= \frac{F}{m} = \frac{11.55 N}{0.5 kg} =23.1 m/s^2[/tex]
5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as
[tex]g= \frac{F}{m} = \frac{0.3 N}{0.5 kg} =0.6 m/s^2[/tex]
6) On Earth, the gravity acceleration is [tex]g=9.81 m/s^2[/tex]. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
[tex]F=mg=(0.5 kg)(9.81 m/s^2)=4.9 N[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.