Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
We can first factor all the terms by 2:
6x^2 - 10x - 4=2(3x^2-5x-2)
Then we solve 3x^2-5x-2=0.
Discriminant : 25+4*3*2=49=7^2 hence the roots are (5-7)/6 and (5+7)/6 which are -1/3 and 2
Hence 3x^2-5x-2=(x-2)(3x+1)
Thus 6x^2-10x-4=2(x-2)(3x+1)
6x^2 - 10x - 4=2(3x^2-5x-2)
Then we solve 3x^2-5x-2=0.
Discriminant : 25+4*3*2=49=7^2 hence the roots are (5-7)/6 and (5+7)/6 which are -1/3 and 2
Hence 3x^2-5x-2=(x-2)(3x+1)
Thus 6x^2-10x-4=2(x-2)(3x+1)
[tex]6 x^{2} -10x-4[/tex] =
= [tex]6 x^{2} -12x+2x-4[/tex] =
= 6x(x-2)+2(x-2) =
= (x-2)(6x+2) =
= 2(x-2)(3x+1)
or
Let's solve the equation:
[tex]6 x^{2} -10x-4[/tex] = 0
Discriminant:
Δ = [tex] 10^{2} -4*6*(-4)[/tex] = 196 = [tex] 14^{2} [/tex]
The roots are:
x1 = [tex] \frac{10+14}{2*6} [/tex] = [tex] \frac{24}{12} [/tex] = 2
x2 = [tex] \frac{10-14}{2*6} [/tex] = [tex] \frac{-4}{12} [/tex] = [tex] \frac{-1}{3} [/tex]
so:
[tex]6 x^{2} -10x-4[/tex] = 6(x-2)(x+[tex] \frac{1}{3} [/tex]) = (x-2)(6x+2) = 2(x-2)(3x+1)
= [tex]6 x^{2} -12x+2x-4[/tex] =
= 6x(x-2)+2(x-2) =
= (x-2)(6x+2) =
= 2(x-2)(3x+1)
or
Let's solve the equation:
[tex]6 x^{2} -10x-4[/tex] = 0
Discriminant:
Δ = [tex] 10^{2} -4*6*(-4)[/tex] = 196 = [tex] 14^{2} [/tex]
The roots are:
x1 = [tex] \frac{10+14}{2*6} [/tex] = [tex] \frac{24}{12} [/tex] = 2
x2 = [tex] \frac{10-14}{2*6} [/tex] = [tex] \frac{-4}{12} [/tex] = [tex] \frac{-1}{3} [/tex]
so:
[tex]6 x^{2} -10x-4[/tex] = 6(x-2)(x+[tex] \frac{1}{3} [/tex]) = (x-2)(6x+2) = 2(x-2)(3x+1)
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.