Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the derivative of g(x)=e^(x^2+2x)+3x

Sagot :

Ok first we can split it in two : [tex]e^{x^2+2x}[/tex] and [tex]3x[/tex].

The derivative of [tex]3x[/tex] is 3.

For the first part, we use the chain rule : [tex][f(g(x))]'=g'(x)f'(g(x))[/tex] hence [tex](e^{x^2+2x})'=(x^2+2x)'e^{x^2+2x}[/tex] (since the derivative of the exponential is itself) hence [tex]g'(x)=(2x+2)e^{x^2+2x}+3[/tex]
[tex]g(x)=e^{x^2+2x}+3x\\ g'(x)=e^{x^2+2x}\cdot(2x+2)+3\\ g'(x)=2e^{x^2+2x}(x+1)+3 [/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.