Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Ok first we can split it in two : [tex]e^{x^2+2x}[/tex] and [tex]3x[/tex].
The derivative of [tex]3x[/tex] is 3.
For the first part, we use the chain rule : [tex][f(g(x))]'=g'(x)f'(g(x))[/tex] hence [tex](e^{x^2+2x})'=(x^2+2x)'e^{x^2+2x}[/tex] (since the derivative of the exponential is itself) hence [tex]g'(x)=(2x+2)e^{x^2+2x}+3[/tex]
The derivative of [tex]3x[/tex] is 3.
For the first part, we use the chain rule : [tex][f(g(x))]'=g'(x)f'(g(x))[/tex] hence [tex](e^{x^2+2x})'=(x^2+2x)'e^{x^2+2x}[/tex] (since the derivative of the exponential is itself) hence [tex]g'(x)=(2x+2)e^{x^2+2x}+3[/tex]
[tex]g(x)=e^{x^2+2x}+3x\\
g'(x)=e^{x^2+2x}\cdot(2x+2)+3\\
g'(x)=2e^{x^2+2x}(x+1)+3
[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.