At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
[tex]2x^2+4x-16=0\ \ \ /:2\\\\x^2+2x-8=0\\\\\underbrace{x^2+2x\cdot1+1^2}_{(*)}-1^2-8=0\\\\(x+1)^2-1-8=0\\\\(x+1)^2-9=0\\\\(x+1)^2=9\iff x+1=-3\ or\ x+1=3\\\\x=-3-1\ or\ x=3-1\\\\x=-4\ or\ x=2\\\\\\(*)\ (a+b)^2=a^2+2ab+b^2[/tex]
[tex]2x^2+4x-16=0\ \ \ /:2\\\\x^2+2x-8=0\\\\a=1;\ b=2;\ c=-8\\\\\Delta=b^2-4ac\ if\ \Delta > 0\ then\ x_1=\frac{-b-\sqrt\Delta}{2a}\ and\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\Delta=2^2-4\cdot1\cdot(-8)=4+32=36;\ \sqrt\Delta=\sqrt{36}=6\\\\x_1=\frac{-2-6}{2\cdot1}=\frac{-8}{2}=-4;\ x_2=\frac{-2+6}{2\cdot1}=\frac{4}{2}=2[/tex]
[tex]2x^2+4x-16=0\ \ \ /:2\\\\x^2+2x-8=0\\\\a=1;\ b=2;\ c=-8\\\\\Delta=b^2-4ac\ if\ \Delta > 0\ then\ x_1=\frac{-b-\sqrt\Delta}{2a}\ and\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\Delta=2^2-4\cdot1\cdot(-8)=4+32=36;\ \sqrt\Delta=\sqrt{36}=6\\\\x_1=\frac{-2-6}{2\cdot1}=\frac{-8}{2}=-4;\ x_2=\frac{-2+6}{2\cdot1}=\frac{4}{2}=2[/tex]
in order to solve it, we need find the zero of the polynomial.
we find the zero of the polynomial by splitting the middle term method
2x2 -+ 4x - 16
= 2x2 + 8x - 4x -16
= 2x( x + 4)- 4(x + 4)
= (2x-)(x+4)
we find the zeroes of the factors
experimentally we find two values, 2 and -4.
Thus, values of x are 2 and -4
we find the zero of the polynomial by splitting the middle term method
2x2 -+ 4x - 16
= 2x2 + 8x - 4x -16
= 2x( x + 4)- 4(x + 4)
= (2x-)(x+4)
we find the zeroes of the factors
experimentally we find two values, 2 and -4.
Thus, values of x are 2 and -4
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.