Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the surface area of the prism?



A.
164 yd2

B.
204 yd2

C.
240 yd2

D.
300 yd2



What Is The Surface Area Of The Prism A 164 Yd2 B 204 Yd2 C 240 Yd2 D 300 Yd2 class=

Sagot :

[tex]The\ surface\ area:A_s=2B+(S_1+S_2+S_3)\cdot H\\B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\S_1=5yd;\ S_2=12yd;\ S_3=13yd;\ h=8yd\\\\therefore\\\\A_s=2\cdot30+(5+12+13)\cdot8=60+30\cdot8=60+240=\boxed{300\ (yd^2)}[/tex][tex]Volume\ of\ the\ prism:V=B\cdot H\\\\B\ (base)\ it's\ a\ right\ triangle:B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\H=8yd\\\\therefore\\\\V=30\cdot8=\boxed{240\ (yd^2)}\leftarrow\boxed{C}[/tex]
Dan's calculations are correct, but we're not solving for the volume of the prism, we're solving for the surface area. To calculate that, we take the surface area of the two triangles on the ends, (already shown to be 30 yds2 each, so when counting both comes to 60yds), plus the surface area of the side that is 8 by 13, the side that is 8 by 12, and the side that is 8 by 5. 8x5=40, 8x12=96, 8x13=104. 40+96+104+(previously determined)60 = 300. So the surface area is 300 yds2.