Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]The\ surface\ area:A_s=2B+(S_1+S_2+S_3)\cdot H\\B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\S_1=5yd;\ S_2=12yd;\ S_3=13yd;\ h=8yd\\\\therefore\\\\A_s=2\cdot30+(5+12+13)\cdot8=60+30\cdot8=60+240=\boxed{300\ (yd^2)}[/tex][tex]Volume\ of\ the\ prism:V=B\cdot H\\\\B\ (base)\ it's\ a\ right\ triangle:B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\H=8yd\\\\therefore\\\\V=30\cdot8=\boxed{240\ (yd^2)}\leftarrow\boxed{C}[/tex]
Dan's calculations are correct, but we're not solving for the volume of the prism, we're solving for the surface area. To calculate that, we take the surface area of the two triangles on the ends, (already shown to be 30 yds2 each, so when counting both comes to 60yds), plus the surface area of the side that is 8 by 13, the side that is 8 by 12, and the side that is 8 by 5. 8x5=40, 8x12=96, 8x13=104. 40+96+104+(previously determined)60 = 300. So the surface area is 300 yds2.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.