Answered

Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A local club is arranging a charter flight. The cost of the trip is $360 each for 90 passengers, with a refund of $2 per passenger for each seat sold in excess of 90. (Hint: x=number of passengers over 90.)
a.) Write the revenue function R(x).
b.) Find the maximum revenue and the number of passengers which will maximize the revenue. Be sure to show all necessary supporting calculus.


Sagot :

A. [tex]R(x)=(360-2x)(90+x)\\R(x)=32400+360x-180x-2x^2\\R(x)=-2x^2+180x+32400[/tex]

B. [tex]R(x)=-2x^2+180x+32400\\R'(x)=-4x+180=0\\180=4x\\45=x\\\\R(45)=-2(45)^2+180(45)+32400\\R(45)=-2(2025)+8100+32400\\R(45)=-4050+40500\\R(45)=36450\\\\90+45\\135[/tex]

135 passengers will maximize the revenue at $36,450.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.