Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given that N and V are constants:
[tex]P=\frac{NRT}{V}\\(400)=(8.31)(110)\frac{N}{V}\\400=914.59\frac{N}{V}\\\frac{400}{914.59}=\frac{N}{V}\\\\P=(8.31)(235)\frac{N}{V}\\P=(1953.90)\frac{400}{914.59}\\P=854.55\\854.55=about~854.46[/tex]
C. 854.46 kPa
[tex]P=\frac{NRT}{V}\\(400)=(8.31)(110)\frac{N}{V}\\400=914.59\frac{N}{V}\\\frac{400}{914.59}=\frac{N}{V}\\\\P=(8.31)(235)\frac{N}{V}\\P=(1953.90)\frac{400}{914.59}\\P=854.55\\854.55=about~854.46[/tex]
C. 854.46 kPa
Answer : (C) 854.46 KPa.
Solution : Given,
Initial pressure = 400 KPa
Initial temperature = 110 K
Final temperature = 235 K
According to the Gay-Lussac's law, the absolute pressure is directly proportional to the absolute temperature at constant volume of an ideal gas.
P ∝ T
Formula used :
[tex]\frac{P_{1}}{P_{2}}=\frac{T_{1}}{T_{2}}[/tex]
where,
[tex]P_{1}[/tex] = initial pressure
[tex]P_{2}[/tex] = final pressure
[tex]T_{1}[/tex] = initial temperature
[tex]T_{2}[/tex] = final temperature
Now put all the values in above formula, we get
[tex]\frac{400}{P_{2}}=\frac{110}{235}[/tex]
By rearranging the terms, we get the value of new/final pressure.
[tex]P_{2}[/tex] = 854.5454 KPa [tex]\approx[/tex] 854.55 KPa
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.