Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given that N and V are constants:
[tex]P=\frac{NRT}{V}\\(400)=(8.31)(110)\frac{N}{V}\\400=914.59\frac{N}{V}\\\frac{400}{914.59}=\frac{N}{V}\\\\P=(8.31)(235)\frac{N}{V}\\P=(1953.90)\frac{400}{914.59}\\P=854.55\\854.55=about~854.46[/tex]
C. 854.46 kPa
[tex]P=\frac{NRT}{V}\\(400)=(8.31)(110)\frac{N}{V}\\400=914.59\frac{N}{V}\\\frac{400}{914.59}=\frac{N}{V}\\\\P=(8.31)(235)\frac{N}{V}\\P=(1953.90)\frac{400}{914.59}\\P=854.55\\854.55=about~854.46[/tex]
C. 854.46 kPa
Answer : (C) 854.46 KPa.
Solution : Given,
Initial pressure = 400 KPa
Initial temperature = 110 K
Final temperature = 235 K
According to the Gay-Lussac's law, the absolute pressure is directly proportional to the absolute temperature at constant volume of an ideal gas.
P ∝ T
Formula used :
[tex]\frac{P_{1}}{P_{2}}=\frac{T_{1}}{T_{2}}[/tex]
where,
[tex]P_{1}[/tex] = initial pressure
[tex]P_{2}[/tex] = final pressure
[tex]T_{1}[/tex] = initial temperature
[tex]T_{2}[/tex] = final temperature
Now put all the values in above formula, we get
[tex]\frac{400}{P_{2}}=\frac{110}{235}[/tex]
By rearranging the terms, we get the value of new/final pressure.
[tex]P_{2}[/tex] = 854.5454 KPa [tex]\approx[/tex] 854.55 KPa
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.