Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
A. [tex]f(x)=\frac{9x+7}{2x+4}\\f'(x)=\frac{(9)(2x+4)-(9x+7)(2)}{(2x+4)^2}\\f'(x)=\frac{(18x+36)-(18x+14)}{(2x+4)(2x+4)}\\f'(x)=\frac{22}{4x^2+16x+16}\\f'(x)=\frac{11}{2x^2+8x+8}\\\frac{11}{(2x+4)(x+2)}=0\\\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - There are no critical points because the graph is neither continuous nor smooth. There is a discontinuity at x = 2.
B. [tex]\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - The absolute maximum is f(lim⇒-2_-) = infinity. The absolute minimum is f(lim⇒-2_+) = -infinity. This applies to the interval [-10, 7].
C. [tex]f(x)=\frac{9x+7}{2x+4}\\f(0)=\frac{9(0)+7}{2(0)+4}\\f(0)=\frac{7}{4}\\f(0)=1.75\\f(5)=\frac{9(5)+7}{2(5)+4}\\f(5)=\frac{45+7}{10+4}\\f(5)=\frac{52}{14}\\f(5)=\frac{26}{7}\\f(5)=3.714[/tex] - The absolute maximum is f(5) = 26/7 or 3.714. The absolute mimimum is f(0) = 1.75. This applies to the interval [0, 5]. Proof: graph f(x) at [0, 5] on a graph or graphing calculator.
B. [tex]\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - The absolute maximum is f(lim⇒-2_-) = infinity. The absolute minimum is f(lim⇒-2_+) = -infinity. This applies to the interval [-10, 7].
C. [tex]f(x)=\frac{9x+7}{2x+4}\\f(0)=\frac{9(0)+7}{2(0)+4}\\f(0)=\frac{7}{4}\\f(0)=1.75\\f(5)=\frac{9(5)+7}{2(5)+4}\\f(5)=\frac{45+7}{10+4}\\f(5)=\frac{52}{14}\\f(5)=\frac{26}{7}\\f(5)=3.714[/tex] - The absolute maximum is f(5) = 26/7 or 3.714. The absolute mimimum is f(0) = 1.75. This applies to the interval [0, 5]. Proof: graph f(x) at [0, 5] on a graph or graphing calculator.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.