Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
A. [tex]f(x)=\frac{9x+7}{2x+4}\\f'(x)=\frac{(9)(2x+4)-(9x+7)(2)}{(2x+4)^2}\\f'(x)=\frac{(18x+36)-(18x+14)}{(2x+4)(2x+4)}\\f'(x)=\frac{22}{4x^2+16x+16}\\f'(x)=\frac{11}{2x^2+8x+8}\\\frac{11}{(2x+4)(x+2)}=0\\\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - There are no critical points because the graph is neither continuous nor smooth. There is a discontinuity at x = 2.
B. [tex]\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - The absolute maximum is f(lim⇒-2_-) = infinity. The absolute minimum is f(lim⇒-2_+) = -infinity. This applies to the interval [-10, 7].
C. [tex]f(x)=\frac{9x+7}{2x+4}\\f(0)=\frac{9(0)+7}{2(0)+4}\\f(0)=\frac{7}{4}\\f(0)=1.75\\f(5)=\frac{9(5)+7}{2(5)+4}\\f(5)=\frac{45+7}{10+4}\\f(5)=\frac{52}{14}\\f(5)=\frac{26}{7}\\f(5)=3.714[/tex] - The absolute maximum is f(5) = 26/7 or 3.714. The absolute mimimum is f(0) = 1.75. This applies to the interval [0, 5]. Proof: graph f(x) at [0, 5] on a graph or graphing calculator.
B. [tex]\frac{1}{(2x+4)(x+2)}=0\\x=-\infty,\infty[/tex] - The absolute maximum is f(lim⇒-2_-) = infinity. The absolute minimum is f(lim⇒-2_+) = -infinity. This applies to the interval [-10, 7].
C. [tex]f(x)=\frac{9x+7}{2x+4}\\f(0)=\frac{9(0)+7}{2(0)+4}\\f(0)=\frac{7}{4}\\f(0)=1.75\\f(5)=\frac{9(5)+7}{2(5)+4}\\f(5)=\frac{45+7}{10+4}\\f(5)=\frac{52}{14}\\f(5)=\frac{26}{7}\\f(5)=3.714[/tex] - The absolute maximum is f(5) = 26/7 or 3.714. The absolute mimimum is f(0) = 1.75. This applies to the interval [0, 5]. Proof: graph f(x) at [0, 5] on a graph or graphing calculator.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.