Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
A)
If it has an area of 4(x+3) we can think that one side has a length of 4, and the other has a length of (x+3).
So, if the dimensions were doubled, 4 x 2 = 8. And 2(x+3) = 2x+6.
The new area would be:
8(2x+6) = 16x+48.
B)
The ratio will be the same. For example lets plug in some points:
x=0
4(0+3) = 4(3) = 12
And
16(0)+48 = 0+48 = 48
So the ratio is 48/12 = 4
Lets plug in another point.
x=2
4(2+3)= 4(5) = 20
And
x=2
16(2)+48 = 32 + 48 = 80
80/20 = 4
So the ratio is the same :)
If it has an area of 4(x+3) we can think that one side has a length of 4, and the other has a length of (x+3).
So, if the dimensions were doubled, 4 x 2 = 8. And 2(x+3) = 2x+6.
The new area would be:
8(2x+6) = 16x+48.
B)
The ratio will be the same. For example lets plug in some points:
x=0
4(0+3) = 4(3) = 12
And
16(0)+48 = 0+48 = 48
So the ratio is 48/12 = 4
Lets plug in another point.
x=2
4(2+3)= 4(5) = 20
And
x=2
16(2)+48 = 32 + 48 = 80
80/20 = 4
So the ratio is the same :)
A- [tex]a_{1} = length , b_{2}=width, A_{1}= Area; [/tex]
[tex]a_{2}=na_{1} , b_{2}=nb_{1} ==> A_{2}= 2^{n} A_{1}[/tex]
if we double the dimensions of the rectangle, the area will be fourfold:
[tex]A_{2} = 2^2[4(x+3)]=16x+48[/tex]
B- yes, it will always be the same because:
[tex] \frac{A_{2}}{A_{1}} = \frac{4(4(x+3))}{4(x+3)} =4[/tex]
[tex]a_{2}=na_{1} , b_{2}=nb_{1} ==> A_{2}= 2^{n} A_{1}[/tex]
if we double the dimensions of the rectangle, the area will be fourfold:
[tex]A_{2} = 2^2[4(x+3)]=16x+48[/tex]
B- yes, it will always be the same because:
[tex] \frac{A_{2}}{A_{1}} = \frac{4(4(x+3))}{4(x+3)} =4[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.