Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

a mouse population starts with 2,000 mice and grows at a rate of 5% per year. The number of mice after t years can be modeled by the equation, P(t)=2000(1.05)^t. What is the average rate of change in the number of mice between the second year and the fifth year, rounded to the nearest whole number

Sagot :

Let's disect our equation.

[tex]P_t = 2000*1.05^t[/tex]

The 2000 is the initial number. Each year, there is 5% more. Add that to the 100% already there and you get 105%, in decimal form 1.05. Each year that is multiplied onto 2000, so we represent it as an exponent ^t. The 1.05^t is our rate of change.

Now let's try for 2 and 5.
[tex]P_2 = 2000*1.05^2[/tex]
[tex]P_5 = 2000*1.05^5[/tex]

The rate of change would be the difference between the two.

[tex]1.05^5 - 1.05^2 = 1.05^(^5^-^2^) = \boxed{1.05^3\ or\ 1.157625}[/tex]