Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
So let's assume that the square root of 6 is rational. By definition, that means there are two integers a and b with no common divisors where: a/b = square root of 6. But this last statement means the RHS (right hand side) is even, because it is a product of integers and one of those integers (at least) is even.
Let's assume that it's rational: [tex]\sqrt6=\frac{p}q,p\wedge q=1[/tex]
Then [tex]p^2=6q^2[/tex] hence [tex]p[/tex] is even, which can be written [tex]p=2p'[/tex]
Hence [tex]4p'^2=6q^2[/tex] thus [tex]2p'^2=3q^2[/tex]
Thus p,q are both even, which is absurd.
Hence sqrt(6) is irrational
Then [tex]p^2=6q^2[/tex] hence [tex]p[/tex] is even, which can be written [tex]p=2p'[/tex]
Hence [tex]4p'^2=6q^2[/tex] thus [tex]2p'^2=3q^2[/tex]
Thus p,q are both even, which is absurd.
Hence sqrt(6) is irrational
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.