Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

is the square root of 6 a rational or irrational number

Sagot :

So let's assume that the square root of 6 is rational. By definition, that means there are two integers a and b with no common divisors where: a/b = square root of 6. But this last statement means the RHS (right hand side) is even, because it is a product of integers and one of those integers (at least) is even.
Let's assume that it's rational: [tex]\sqrt6=\frac{p}q,p\wedge q=1[/tex]

Then [tex]p^2=6q^2[/tex] hence [tex]p[/tex] is even, which can be written [tex]p=2p'[/tex]

Hence [tex]4p'^2=6q^2[/tex] thus [tex]2p'^2=3q^2[/tex]

Thus p,q are both even, which is absurd.

Hence sqrt(6) is irrational