Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Identify the absolute extrema of the function and the x-values where they occur.

f(x)=6x+(24/x^sqr)+3, x>0

Sagot :

[tex]f(x)=6x+\dfrac{24}{x^2}+3\\ f'(x)=6-\dfrac{48}{x^3}\\ 6-\dfrac{48}{x^3}=0\\ 6x^3-48=0\\ 6x^3=48\\ x^3=8\\ x=2\\ [/tex]

For [tex]x<2 \wedge x\not=0[/tex] the derivative is negative.
For [tex]x>2[/tex] the derivative is positive.
Therefore at [tex]x=2[/tex] there's a minimum.

[tex]f_{min}=6\cdot2+\dfrac{24}{2^2}+3=12+6+3=21[/tex]

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.