Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The equation of a line is usually written in what's called slope-intercept form.
Slope-intercept form is written as y = mx + b where m = slope and b = the y-intercept.
The slope of a line can easily be found just by using two points on the line. The slope is equal to the rise over the run, or the difference in y over the difference in x, between the two points.
[tex]slope = \frac{y_2-y_1}{x_2-x_1} = \frac{-2-0}{0-7} = \frac{-2}{-7} = \boxed{\frac{2}{7}=m}[/tex]
The y-intercept of the line is the point at which it intersects the y-axis. (The vertical axis.) All points on the y-axis have an x coordinate of 0, so we would then add or subtract the rise and run to a point on the line until we reached x = 0.
Fortunately, we already have this point! It's (0, -2)!
[tex]y-intercept=\boxed{-2=b}[/tex]
Now we just need to put our slope and y-intercept into the equation.
[tex]\boxed{\boxed{y=\frac{2}{7}x-2}}[/tex]
And to test if a point is on this line, just plug in the x and y coordinates and see if the equation is true!
[tex]-16 = \frac{2}{7}*49-2 \\ -16 = 14 - 2 \\ -16 \neq 12,\ \therefore line\ m\ does\ not\ contain\ (49, -16)[/tex]
Slope-intercept form is written as y = mx + b where m = slope and b = the y-intercept.
The slope of a line can easily be found just by using two points on the line. The slope is equal to the rise over the run, or the difference in y over the difference in x, between the two points.
[tex]slope = \frac{y_2-y_1}{x_2-x_1} = \frac{-2-0}{0-7} = \frac{-2}{-7} = \boxed{\frac{2}{7}=m}[/tex]
The y-intercept of the line is the point at which it intersects the y-axis. (The vertical axis.) All points on the y-axis have an x coordinate of 0, so we would then add or subtract the rise and run to a point on the line until we reached x = 0.
Fortunately, we already have this point! It's (0, -2)!
[tex]y-intercept=\boxed{-2=b}[/tex]
Now we just need to put our slope and y-intercept into the equation.
[tex]\boxed{\boxed{y=\frac{2}{7}x-2}}[/tex]
And to test if a point is on this line, just plug in the x and y coordinates and see if the equation is true!
[tex]-16 = \frac{2}{7}*49-2 \\ -16 = 14 - 2 \\ -16 \neq 12,\ \therefore line\ m\ does\ not\ contain\ (49, -16)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.