Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The equation of a line is usually written in what's called slope-intercept form.
Slope-intercept form is written as y = mx + b where m = slope and b = the y-intercept.
The slope of a line can easily be found just by using two points on the line. The slope is equal to the rise over the run, or the difference in y over the difference in x, between the two points.
[tex]slope = \frac{y_2-y_1}{x_2-x_1} = \frac{-2-0}{0-7} = \frac{-2}{-7} = \boxed{\frac{2}{7}=m}[/tex]
The y-intercept of the line is the point at which it intersects the y-axis. (The vertical axis.) All points on the y-axis have an x coordinate of 0, so we would then add or subtract the rise and run to a point on the line until we reached x = 0.
Fortunately, we already have this point! It's (0, -2)!
[tex]y-intercept=\boxed{-2=b}[/tex]
Now we just need to put our slope and y-intercept into the equation.
[tex]\boxed{\boxed{y=\frac{2}{7}x-2}}[/tex]
And to test if a point is on this line, just plug in the x and y coordinates and see if the equation is true!
[tex]-16 = \frac{2}{7}*49-2 \\ -16 = 14 - 2 \\ -16 \neq 12,\ \therefore line\ m\ does\ not\ contain\ (49, -16)[/tex]
Slope-intercept form is written as y = mx + b where m = slope and b = the y-intercept.
The slope of a line can easily be found just by using two points on the line. The slope is equal to the rise over the run, or the difference in y over the difference in x, between the two points.
[tex]slope = \frac{y_2-y_1}{x_2-x_1} = \frac{-2-0}{0-7} = \frac{-2}{-7} = \boxed{\frac{2}{7}=m}[/tex]
The y-intercept of the line is the point at which it intersects the y-axis. (The vertical axis.) All points on the y-axis have an x coordinate of 0, so we would then add or subtract the rise and run to a point on the line until we reached x = 0.
Fortunately, we already have this point! It's (0, -2)!
[tex]y-intercept=\boxed{-2=b}[/tex]
Now we just need to put our slope and y-intercept into the equation.
[tex]\boxed{\boxed{y=\frac{2}{7}x-2}}[/tex]
And to test if a point is on this line, just plug in the x and y coordinates and see if the equation is true!
[tex]-16 = \frac{2}{7}*49-2 \\ -16 = 14 - 2 \\ -16 \neq 12,\ \therefore line\ m\ does\ not\ contain\ (49, -16)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.