Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The time the ball takes to fall 9.5 meters is the square root of (19/g), where g is gravitational acceleration.
The time it takes to rise to 5.7 meters is the square root of (11.4/g), for the same value of g.
The time it takes to fall from 5.7 meters to 1.2 is the square root of (9/g).
So the answer is [sqrt(19)+sqrt(11.4)+sqrt(9)]/sqrt(g). If g=10, the answer is 3.39 seconds; if g=9.8, the answer is 3.43 seconds.
The time it takes to rise to 5.7 meters is the square root of (11.4/g), for the same value of g.
The time it takes to fall from 5.7 meters to 1.2 is the square root of (9/g).
So the answer is [sqrt(19)+sqrt(11.4)+sqrt(9)]/sqrt(g). If g=10, the answer is 3.39 seconds; if g=9.8, the answer is 3.43 seconds.
Answer: 3.4s
Explanation:
There are three stages in the motion of the ball, so you have to calculate the times for every stage.
1) Ball dropping from 9.5m: free fall
d = Vo + gt² / 2
Vo = 0 ⇒ d = gt² / 2 ⇒ t² = 2d / g = 2 × 9.5 m / 9.81 m/s² = 1.94 s²
⇒ t = √ (1.94 s²) = 1.39s
2) Ball rising 5.7m (vertical rise)
i) Determine the initial speed:
Vf² = Vo² - 2gd
Vf² = 0 ⇒ Vo² = 2gd = 2 × 9.81 m/s² × 5.7m = 111.8 m²/s²
⇒ Vo = 10.6 m/s
ii) time rising
Vf = Vo - gt
Vf = 0 ⇒ Vo = gt ⇒
t = Vo / g = 10.6 m/s / 9.81 m/s² = 1.08 s
3) Ball dropping from 5.7 m to 1.20m above the pavement (free fall)
i) d = 5.7m - 1.20m = 4.5m
ii) d = gt² / 2 ⇒ t² = 2d / g = 2 × 4.5 m / 9.81 m/s² = 0.92 s²
⇒ t = √ (0.92 s²) = 0.96s
4) Total time
t = 1.39s + 1.08s + 0.96s = 3.43s ≈ 3.4s
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.