Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
[tex]f(x)=x^3-2x^2+5x+1\\ f'(x)=3x^2-4x+5\\
3x^2-4x+5=0\\\Delta=(-4)^2-4\cdot3\cdot5=16-60=-44[/tex]
[tex]\Delta<0 \wedge a>0 \Rightarrow[/tex] the graph of the parabola is above the x-axis, so the derivative is always positive and therefore the initial function is increasing in its whole domain.
[tex]f(x)=0.5x^2-6\\ f'(x)=x[/tex]
The function is decreasing when its first derivative is negative. The first derivative of this function is negative for [tex]x<0[/tex] so for [tex]x\in(-\infty,0)[/tex] the function is decreasing.
[tex]f(x)=\dfrac{x+1}{x-1}\qquad(x\not=1)\\ f'(x)=\dfrac{x-1-(x+1)}{(x-1)^2}=-\dfrac{2}{(x-1)^2}[/tex]
The function is increasing when its first derivative is positive. The first derivative of this function is always negative therefore this function is never increasing.
[tex]\Delta<0 \wedge a>0 \Rightarrow[/tex] the graph of the parabola is above the x-axis, so the derivative is always positive and therefore the initial function is increasing in its whole domain.
[tex]f(x)=0.5x^2-6\\ f'(x)=x[/tex]
The function is decreasing when its first derivative is negative. The first derivative of this function is negative for [tex]x<0[/tex] so for [tex]x\in(-\infty,0)[/tex] the function is decreasing.
[tex]f(x)=\dfrac{x+1}{x-1}\qquad(x\not=1)\\ f'(x)=\dfrac{x-1-(x+1)}{(x-1)^2}=-\dfrac{2}{(x-1)^2}[/tex]
The function is increasing when its first derivative is positive. The first derivative of this function is always negative therefore this function is never increasing.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.