Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Finite because the decimals end. If it was 1/3 then it would be infinite because the decimals would go on foreber
[tex]1;\ \frac{1}{4};\ \frac{1}{16};\ \frac{1}{64};...\\\\a_1=\frac{1}{4^{1-1}}=\frac{1}{4^0}=\frac{1}{1}=1\\\\a_2=\frac{1}{4^{2-1}}=\frac{1}{4^1}=\frac{1}{4}\\\\a_3=\frac{1}{4^{3-1}}=\frac{1}{4^2}=\frac{1}{16}\\\\a_4=\frac{1}{4^{4-1}}=\frac{1}{4^3}=\frac{1}{64}\\\vdots\\a_n=\frac{1}{4^{n-1}}[/tex]
[tex]\lim\limits_{n\to\infty}\frac{1}{4^{n-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot4^{-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot\frac{1}{4}}=\lim\limits_{n\to\infty}\frac{4}{4^n}=0\\\\\\Answer:A[/tex]
[tex]\lim\limits_{n\to\infty}\frac{1}{4^{n-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot4^{-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot\frac{1}{4}}=\lim\limits_{n\to\infty}\frac{4}{4^n}=0\\\\\\Answer:A[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.