Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Finite because the decimals end. If it was 1/3 then it would be infinite because the decimals would go on foreber
[tex]1;\ \frac{1}{4};\ \frac{1}{16};\ \frac{1}{64};...\\\\a_1=\frac{1}{4^{1-1}}=\frac{1}{4^0}=\frac{1}{1}=1\\\\a_2=\frac{1}{4^{2-1}}=\frac{1}{4^1}=\frac{1}{4}\\\\a_3=\frac{1}{4^{3-1}}=\frac{1}{4^2}=\frac{1}{16}\\\\a_4=\frac{1}{4^{4-1}}=\frac{1}{4^3}=\frac{1}{64}\\\vdots\\a_n=\frac{1}{4^{n-1}}[/tex]
[tex]\lim\limits_{n\to\infty}\frac{1}{4^{n-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot4^{-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot\frac{1}{4}}=\lim\limits_{n\to\infty}\frac{4}{4^n}=0\\\\\\Answer:A[/tex]
[tex]\lim\limits_{n\to\infty}\frac{1}{4^{n-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot4^{-1}}=\lim\limits_{n\to\infty}\frac{1}{4^n\cdot\frac{1}{4}}=\lim\limits_{n\to\infty}\frac{4}{4^n}=0\\\\\\Answer:A[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.