Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A person drops a brick from the top of a building. The height of the building is 400 m and the mass of the brick is 2.00 kg. What will be the speed of the brick right before it touches the ground? Use g=10.0 m/s^2.

Sagot :

This question involves the conservation of energy. There are two energy in this case, potential energy and kinetic energy. Let's divid the energy into three status. 
1. Before dropping, all potential energy 
2.dropping, potential energy transformed to kinetic energy
3. before hitting the ground, all Kinetic energy.

Recall the formula for both energy, which are U=mgh, and K=1/2mv^2

Since the energy is conserved in this case ( b/c otherwise it will say in the problem), the amount of energy at the beginning should equal to the energy at the end. Therefore we have, mgh=1/2mv^2

plug the number in and solve for velocity.

2x400x10=1/2 x 2 x v^2
v^2=8000
v=[tex] \sqrt{8000} [/tex]
v=40[tex] \sqrt{5} [/tex]