Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Geometry
  The diagonals of a  kite are in the ratio of 3:2. The area of the kite is 27 cm^2 .  Find the length of both diagonals. (Hint: Let the lengths of the diagonals be 3x and 2x)

How do I do this?


Sagot :

Lilith
[tex]A=27 \ cm^2 \\ \\ d_{1}=3x , \ \ d_{2} = 2x \\ \\ S=\frac{1}{2}\cdot d_{1}\cdot d_{2}\\ \\27 = \frac{1}{2}\cdot 3x \cdot 2x \\ \\ 3x^2 = 27 \ \ /:3[/tex]

[tex] x^2 = 9 \\ \\3x=x=\sqrt{9}\\ \\x=3 \ cm \\ \\ d_{1}=3x = 3*3 =9 \ cm \\ \\d_{2}=2x=2*3 = 6 \ cm \\ \\ Answer : \\ The \ length \ of \ the \ diagonal \ is: \ d_{1}= 9 \ cm \ and \ d_{2}= 6 \ cm [/tex]

View image Lilith
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.