Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Geometry
  The diagonals of a  kite are in the ratio of 3:2. The area of the kite is 27 cm^2 .  Find the length of both diagonals. (Hint: Let the lengths of the diagonals be 3x and 2x)

How do I do this?


Sagot :

Lilith
[tex]A=27 \ cm^2 \\ \\ d_{1}=3x , \ \ d_{2} = 2x \\ \\ S=\frac{1}{2}\cdot d_{1}\cdot d_{2}\\ \\27 = \frac{1}{2}\cdot 3x \cdot 2x \\ \\ 3x^2 = 27 \ \ /:3[/tex]

[tex] x^2 = 9 \\ \\3x=x=\sqrt{9}\\ \\x=3 \ cm \\ \\ d_{1}=3x = 3*3 =9 \ cm \\ \\d_{2}=2x=2*3 = 6 \ cm \\ \\ Answer : \\ The \ length \ of \ the \ diagonal \ is: \ d_{1}= 9 \ cm \ and \ d_{2}= 6 \ cm [/tex]

View image Lilith
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.