Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
f(x) = -4sin(2x + π) - 5
Amplitude
A = -π
Period
2π = 2π = π
B 2
Phase Shift
-C = -π = ≈ 1.57
B 2
Amplitude
A = -π
Period
2π = 2π = π
B 2
Phase Shift
-C = -π = ≈ 1.57
B 2
Answer:
Amplitude of the function is 4, period of the function is π and phase shift of the function is [tex]-\frac{\pi}{2}[/tex].
Step-by-step explanation:
The given function is
[tex]f(x)=-4\sin(2x+\pi)-5[/tex] .... (1)
The general form of a sine function is
[tex]f(x)=A\sin(Bx+C)+D[/tex] .... (2)
where, |A| is amplitude, [tex]\frac{2\pi}{B}[/tex] is period, [tex]-\frac{C}{B}[/tex] is phase shift and D is midline.
From (1) and (2) we get
[tex]A=-4,B=2, C=\pi,D=-5[/tex]
[tex]|A|=|-4|=4[/tex]
Amplitude of the function is 4.
[tex]\frac{2\pi}{B}=\frac{2\pi}{2}=\pi[/tex]
Period of the function is π.
[tex]-\frac{C}{B}=-\frac{\pi}{2}[/tex]
Therefore the phase shift of the function is [tex]-\frac{\pi}{2}[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.