Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Function f(x) = ax^{2}+bx+c, where a, b, and c are some constants. Define functions g and h as follows:
g(x) = f(x+ 1)−f(x)
h(x) = g(x+ 1)−g(x)
Find algebraic form of h(x)
Can anyone explain how to make it step by step?


Sagot :

g(x) = f(x+1) - f(x)
=[ a(x+1)^2+b(x+1)+c ] - [ax^2+bx+c]
=[ a(x^2+2x+1) +bx + b + c ] - [ax^2 + bx + c]
=[ ax^2 + 2ax + a + bx + b + c ] - [ax^2 + bx + c]
= ax^2 + 2ax + a + bx + b + c - ax^2 - bx - c
= 2ax + a + b
Therefore g(x) = 2ax + a + b
h(x) = g(x+1) - g(x)
=2a (x+1) + a + b - [2ax+a+b]
=2ax + 1 + a +b - 2ax - a - b
Therefore h(x) = 1