Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
How to complete the square:
Step 1: Get all constants on one side.
[tex]2x^2+8x-7=-2\\2x^2+8x=5[/tex]
Step 2: If x² has a coefficient, divide it out.
[tex]2x^2+8x=5 \\ x^2+4x=\frac2{1}2[/tex]
Step 3: Halve the coefficient of x, square it, and add it to both sides.
(In this case, half of 4 is 2, and 2² is 4, so we add 4 to both sides.
[tex]x^2+4x=\frac{5}2\\x^2+4x+2=6\frac{1}2[/tex]
Step 4: Factor the left side. (And if the right side is a mixed number, change it to an improper fraction to make step 5 easier)
We set it up so that it will be a perfect square trinomial, so it'll always be equal to (x+half the coefficient of x)².
[tex]x^2+4x+2=6\frac{1}2\\(x+2)^2=\frac{13}2[/tex]
Step 5: Take the square root of each side.
(x+2)^2=\frac{13}2\\\sqrt{(x+2)^2}=\sqrt{\frac{13}2}
Step 6: Simplify and solve for x.
[tex]\sqrt{(x+2)^2}=\sqrt{\frac{13}2} \\ x+2=\frac{\sqrt{13}}{\sqrt{2}} = \frac{\sqrt{26}}2 \\\\ \boxed{x = -2\±\frac{\sqrt{26}}2}[/tex]
(Decimal answers if needed: approx -4.5495 and 0.54951)
Step 1: Get all constants on one side.
[tex]2x^2+8x-7=-2\\2x^2+8x=5[/tex]
Step 2: If x² has a coefficient, divide it out.
[tex]2x^2+8x=5 \\ x^2+4x=\frac2{1}2[/tex]
Step 3: Halve the coefficient of x, square it, and add it to both sides.
(In this case, half of 4 is 2, and 2² is 4, so we add 4 to both sides.
[tex]x^2+4x=\frac{5}2\\x^2+4x+2=6\frac{1}2[/tex]
Step 4: Factor the left side. (And if the right side is a mixed number, change it to an improper fraction to make step 5 easier)
We set it up so that it will be a perfect square trinomial, so it'll always be equal to (x+half the coefficient of x)².
[tex]x^2+4x+2=6\frac{1}2\\(x+2)^2=\frac{13}2[/tex]
Step 5: Take the square root of each side.
(x+2)^2=\frac{13}2\\\sqrt{(x+2)^2}=\sqrt{\frac{13}2}
Step 6: Simplify and solve for x.
[tex]\sqrt{(x+2)^2}=\sqrt{\frac{13}2} \\ x+2=\frac{\sqrt{13}}{\sqrt{2}} = \frac{\sqrt{26}}2 \\\\ \boxed{x = -2\±\frac{\sqrt{26}}2}[/tex]
(Decimal answers if needed: approx -4.5495 and 0.54951)
2x² + 8x - 7 = -2
+ 2 + 2
2x² + 8x - 5 = 0
x = -(8) +/- √((8)² - 4(2)(-5))
2(2)
x = -8 +/- √(64 + 40)
4
x = -8 +/- √(104)
4
x = -8 +/- 2√(26)
4
x = -2 + 0.5√(26)
x = -2 + 0.5√(26) x = -2 - 0.5√(26)
+ 2 + 2
2x² + 8x - 5 = 0
x = -(8) +/- √((8)² - 4(2)(-5))
2(2)
x = -8 +/- √(64 + 40)
4
x = -8 +/- √(104)
4
x = -8 +/- 2√(26)
4
x = -2 + 0.5√(26)
x = -2 + 0.5√(26) x = -2 - 0.5√(26)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.