Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To answer this, we will need to know:
• The slope of the equation we are trying to get
• The point it passes through using the
First, we will need to find the slope of this equation. To find this, we must simplify the equation [tex]3x+5y=38[/tex] into [tex]y=mx+b[/tex] form. Lets do it!
[tex]3x+5y=38[/tex]
= [tex]5y = -3x+38[/tex] (Subtract 3x from both sides)
= [tex]y= -\frac{3}{5}x+ \frac{38}{5} [/tex] (Divide both sides by 5)
The slope of a line perpendicular would have to multiply with the equation we just changed to equal -1. In other words, it would have to equal the negative reciprocal.
The negative reciprocal of the line given is [tex] \frac{5}{3} [/tex].
Now that we know the slope, we have to find out the rest of the equation using the slope formula, which is:
[tex] \frac{y-y _{1} }{x- x_{1} }=m[/tex]
Substituting values, we find that:
[tex] \frac{y-4}{x-6}= \frac{5}{3} [/tex]
By simplifying this equation to slope-intercept form (By cross-multiplying then simplifying), we then get that:
[tex]y= \frac{5}{3}x-6[/tex] , which is our final answer.
Thank you, and I wish you luck.
• The slope of the equation we are trying to get
• The point it passes through using the
First, we will need to find the slope of this equation. To find this, we must simplify the equation [tex]3x+5y=38[/tex] into [tex]y=mx+b[/tex] form. Lets do it!
[tex]3x+5y=38[/tex]
= [tex]5y = -3x+38[/tex] (Subtract 3x from both sides)
= [tex]y= -\frac{3}{5}x+ \frac{38}{5} [/tex] (Divide both sides by 5)
The slope of a line perpendicular would have to multiply with the equation we just changed to equal -1. In other words, it would have to equal the negative reciprocal.
The negative reciprocal of the line given is [tex] \frac{5}{3} [/tex].
Now that we know the slope, we have to find out the rest of the equation using the slope formula, which is:
[tex] \frac{y-y _{1} }{x- x_{1} }=m[/tex]
Substituting values, we find that:
[tex] \frac{y-4}{x-6}= \frac{5}{3} [/tex]
By simplifying this equation to slope-intercept form (By cross-multiplying then simplifying), we then get that:
[tex]y= \frac{5}{3}x-6[/tex] , which is our final answer.
Thank you, and I wish you luck.
[tex](6,4); 3x + 5y =38 \ subtract \ 3x \ from \ each \ side \\ \\ 5y = -3x + 8 \ divide \ each \term \ by \ 5 \\ \\ y = -\frac{3} {5}x + \frac{38}{5}\\ \\ The \ slope \ is :m _{1} = - \frac{3}{5} \\ \\ If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have \ m _{1}*m _{2} = -1[/tex]
[tex]m _{1} \cdot m _{2} = -1 \\ \\ -\frac{3}{5} \cdot m_{2}=-1 \ \ / \cdot (-\frac{5}{3}) \\ \\ m_{2}=\frac{5}{3}[/tex]
[tex] Now \ your \ equation \ of \ line \ passing \ through \ (6,4) would \ be: \\ \\ y=m_{2}x+b \\ \\4=\frac{5}{\not3^1} \cdot \not 6^2 + b [/tex]
[tex] 4=5 \cdot 2+b\\ \\4=10+b \\ \\b=4-10\\ \\b=-6 \\ \\ y = \frac{5}{3}x -6 [/tex]
[tex]m _{1} \cdot m _{2} = -1 \\ \\ -\frac{3}{5} \cdot m_{2}=-1 \ \ / \cdot (-\frac{5}{3}) \\ \\ m_{2}=\frac{5}{3}[/tex]
[tex] Now \ your \ equation \ of \ line \ passing \ through \ (6,4) would \ be: \\ \\ y=m_{2}x+b \\ \\4=\frac{5}{\not3^1} \cdot \not 6^2 + b [/tex]
[tex] 4=5 \cdot 2+b\\ \\4=10+b \\ \\b=4-10\\ \\b=-6 \\ \\ y = \frac{5}{3}x -6 [/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.