Answered

Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Prove this identity. Tan^2(0)/1 + tan^2(0) = sin^2(0). Note i placed a bracket around the zeros because i didnt want to look like it is to the power of 20. And the zero is supposed to be the symbol theta.

Sagot :

naǫ
Use the trigonometric identities:
[tex]\tan \theta = \frac{\sin \theta}{\cos \theta} \\ \sin^2 \theta+ \cos^2 \theta=1[/tex]

Proof:
[tex]\frac{\tan^2 \theta}{1+ \tan^2 \theta}}=\sin^2 \theta \ \ \ |\times (1+\tan^2 \theta) \\ \\ \tan^2 \theta = \sin^2 \theta (1+ \tan^2 \theta) \ \ \ |\hbox{convert } \tan \theta \hbox{ to } \frac{\sin \theta}{\cos \theta} \\ \\ (\frac{\sin \theta}{\cos \theta})^2=\sin^2 \theta (1+ (\frac{\sin \theta}{\cos \theta})^2) \\ \\ \frac{\sin^2 \theta}{\cos^2 \theta}=\sin^2 \theta(1+\frac{\sin^2 \theta}{\cos^2 \theta}) \ \ \ |\div \sin \theta[/tex]

[tex]\frac{1}{\cos^2 \theta}=1+\frac{sin^2 \theta}{\cos^2 \theta} \ \ \ |\times \cos^2 \theta \\ \\ 1=\cos^2 \theta+\sin^2 \theta \ \ \ |\hbox{convert } \cos^2 \theta+ \sin^2 \theta \hbox{ to } 1 \\ \\ 1=1[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.