Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The point (3,0) lies on a circle with the center at the origin. What is the area of the circle to the nearest hundredth?

Sagot :

The center is at the origin and the point [tex](3,0)[/tex] lies on the circle, so [tex]r=3[/tex]

[tex]A=\pi r^2\\ A=\pi \cdot3^2\\ A=9\pi\\ A\approx28.27[/tex]

we know that

the equation of a circle with the center at the origin is equal to

[tex] x^{2} +y^{2} =r^{2} [/tex]


step 1

with the point (3,0) find the value of the radius

substitute the values of

[tex] x=3\\ y=0 [/tex]

in the equation of the circle above

so

[tex] 3^{2} +0^{2} =r^{2} [/tex]

[tex] 3^{2} =r^{2} [/tex]

[tex] r =3 [/tex]


step 2

with the radius find the area of the circle

area of the circle is equal to

[tex] A=\pi *r^{2} [/tex]

for [tex] r=3 [/tex]

[tex] A=\pi *3^{2} [/tex]

[tex] A=28.27 [/tex]units²

therefore


the answer is

the area of the circle to the nearest hundredth is [tex] A=28.27 [/tex]units²

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.