At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
We know that the equation of a circle is:
[tex](x-a)^2+(y-b)^2=R^2[/tex]
where a and b are the coordinates of the center, and R is the radius.
So in this question we have to complete the squares:
x² + y² - x - 2y - 11/4 = 0 ----->
x² - x + 1/4 + y² - 2y = 11/4 +1/4 ------->
(x - 1/2)² + y² - 2y + 1 = 12/4 + 1 ----->
(x - 1/2)² + (y - 1)² = 4
Therefore, the coordinates of the center are C = ( 1/2 , 1) and the Radius is R = 2
[tex](x-a)^2+(y-b)^2=R^2[/tex]
where a and b are the coordinates of the center, and R is the radius.
So in this question we have to complete the squares:
x² + y² - x - 2y - 11/4 = 0 ----->
x² - x + 1/4 + y² - 2y = 11/4 +1/4 ------->
(x - 1/2)² + y² - 2y + 1 = 12/4 + 1 ----->
(x - 1/2)² + (y - 1)² = 4
Therefore, the coordinates of the center are C = ( 1/2 , 1) and the Radius is R = 2
x² + y² - x - 2y - 2³/₄ = 0
x² + y² - x - 2y = 2³/₄
x² - x + y² - 2y = 2³/₄
(x² - x + 1) + (y² - 2y + 4) = 2³/₄ + 1 + 4
(x - 1)² + (y - 2)² = 7³/₄
The coordinates for center of the circle is equal to (1, 2). The coordinates of the length of the radius is √(³¹/₄).
x² + y² - x - 2y = 2³/₄
x² - x + y² - 2y = 2³/₄
(x² - x + 1) + (y² - 2y + 4) = 2³/₄ + 1 + 4
(x - 1)² + (y - 2)² = 7³/₄
The coordinates for center of the circle is equal to (1, 2). The coordinates of the length of the radius is √(³¹/₄).
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.