Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Question: Evaluate/death stare at [tex]log_{\frac{1}6}(5)[/tex].
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.