Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Question: Evaluate/death stare at [tex]log_{\frac{1}6}(5)[/tex].
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.