Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
When the domain is ≥ to 0, that basically means that x must be ≥ 0.
Imagine what that looks like.
It would just be the right side of the coordinate plane, right? Because the left side would have negative x values.
We're basically just going to be graphing the line [tex]y=3x-2[/tex], except only the part on the right side of the coordinate plane because of course x ≥ 0.
When you have an equation in the form of [tex]y=mx+b[/tex], [tex]b[/tex] is going to be the y-intercept (the point where the line intersects the y-axis) and [tex]m[/tex] is going to be the slope.
Since the y-intercept is -2, draw a point at (0, -2).
Then, use the slope to find another point on the line.
The slope is 3, which as a fraction would be [tex]\frac{3}1[/tex].
Slope = rise over run, so basically every change of 1 in x = a change of 3 in y.
Draw a point 3 up and 1 over from (0, -2). (at (1, 1))
Then draw a line through the two points we have graphed. Don't draw past the y-axis on the left side, because of course x ≥ 0.
And there you go!
The range of the function is basically the possible values y can have.
Well, since it's not going any lower than the y-intercept (0, -2), the range is ≥ -2.
Imagine what that looks like.
It would just be the right side of the coordinate plane, right? Because the left side would have negative x values.
We're basically just going to be graphing the line [tex]y=3x-2[/tex], except only the part on the right side of the coordinate plane because of course x ≥ 0.
When you have an equation in the form of [tex]y=mx+b[/tex], [tex]b[/tex] is going to be the y-intercept (the point where the line intersects the y-axis) and [tex]m[/tex] is going to be the slope.
Since the y-intercept is -2, draw a point at (0, -2).
Then, use the slope to find another point on the line.
The slope is 3, which as a fraction would be [tex]\frac{3}1[/tex].
Slope = rise over run, so basically every change of 1 in x = a change of 3 in y.
Draw a point 3 up and 1 over from (0, -2). (at (1, 1))
Then draw a line through the two points we have graphed. Don't draw past the y-axis on the left side, because of course x ≥ 0.
And there you go!
The range of the function is basically the possible values y can have.
Well, since it's not going any lower than the y-intercept (0, -2), the range is ≥ -2.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.