Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
When the domain is ≥ to 0, that basically means that x must be ≥ 0.
Imagine what that looks like.
It would just be the right side of the coordinate plane, right? Because the left side would have negative x values.
We're basically just going to be graphing the line [tex]y=3x-2[/tex], except only the part on the right side of the coordinate plane because of course x ≥ 0.
When you have an equation in the form of [tex]y=mx+b[/tex], [tex]b[/tex] is going to be the y-intercept (the point where the line intersects the y-axis) and [tex]m[/tex] is going to be the slope.
Since the y-intercept is -2, draw a point at (0, -2).
Then, use the slope to find another point on the line.
The slope is 3, which as a fraction would be [tex]\frac{3}1[/tex].
Slope = rise over run, so basically every change of 1 in x = a change of 3 in y.
Draw a point 3 up and 1 over from (0, -2). (at (1, 1))
Then draw a line through the two points we have graphed. Don't draw past the y-axis on the left side, because of course x ≥ 0.
And there you go!
The range of the function is basically the possible values y can have.
Well, since it's not going any lower than the y-intercept (0, -2), the range is ≥ -2.
Imagine what that looks like.
It would just be the right side of the coordinate plane, right? Because the left side would have negative x values.
We're basically just going to be graphing the line [tex]y=3x-2[/tex], except only the part on the right side of the coordinate plane because of course x ≥ 0.
When you have an equation in the form of [tex]y=mx+b[/tex], [tex]b[/tex] is going to be the y-intercept (the point where the line intersects the y-axis) and [tex]m[/tex] is going to be the slope.
Since the y-intercept is -2, draw a point at (0, -2).
Then, use the slope to find another point on the line.
The slope is 3, which as a fraction would be [tex]\frac{3}1[/tex].
Slope = rise over run, so basically every change of 1 in x = a change of 3 in y.
Draw a point 3 up and 1 over from (0, -2). (at (1, 1))
Then draw a line through the two points we have graphed. Don't draw past the y-axis on the left side, because of course x ≥ 0.
And there you go!
The range of the function is basically the possible values y can have.
Well, since it's not going any lower than the y-intercept (0, -2), the range is ≥ -2.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.