At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
Answer:
10 m/s
Explanation:
The work-kinetic energy theorem states that the net work done on an object is equal to the change in the kinetic energy of the object.
In formula:
[tex]W=K_f -K_i[/tex] (1)
where
W is the work done
Ki is the initial kinetic energy
Kf is the final kinetic energy
In this problem, we have:
[tex]W=-5000 J[/tex] the net work done on the gymnast
[tex]m=100 kg[/tex] is the mass of the gymnast
[tex]v_f = 0[/tex] is the final velocity of the gymnast, so her final kinetic energy is also zero:
[tex]K_f = \frac{1}{2}mv_f^2 = 0[/tex]
Therefore, we can rewrite eq.(1) as
[tex]W=-\frac{1}{2}mv_i^2[/tex]
where [tex]v_i[/tex] is the initial velocity of the girl. By substituting the numbers and re-arranging the equation, we find:
[tex]v_i = \sqrt{-\frac{2W}{m}}=\sqrt{-\frac{2(-5000 J)}{100 kg}}=10 m/s[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.