At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
Answer:
10 m/s
Explanation:
The work-kinetic energy theorem states that the net work done on an object is equal to the change in the kinetic energy of the object.
In formula:
[tex]W=K_f -K_i[/tex] (1)
where
W is the work done
Ki is the initial kinetic energy
Kf is the final kinetic energy
In this problem, we have:
[tex]W=-5000 J[/tex] the net work done on the gymnast
[tex]m=100 kg[/tex] is the mass of the gymnast
[tex]v_f = 0[/tex] is the final velocity of the gymnast, so her final kinetic energy is also zero:
[tex]K_f = \frac{1}{2}mv_f^2 = 0[/tex]
Therefore, we can rewrite eq.(1) as
[tex]W=-\frac{1}{2}mv_i^2[/tex]
where [tex]v_i[/tex] is the initial velocity of the girl. By substituting the numbers and re-arranging the equation, we find:
[tex]v_i = \sqrt{-\frac{2W}{m}}=\sqrt{-\frac{2(-5000 J)}{100 kg}}=10 m/s[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.