Answered

Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Suppose theta= 11pi/12. How do you use the sum identity to find the exact value of sin theta?

Sagot :

D3xt3R
The better way is, first we have to find the equivalent in degrees

[tex]2\pi=360\º[/tex]

[tex]\frac{11\pi}{12}=345\º[/tex]

now we can change this value to [tex]-15\º[/tex]

how do we get an angle like this?!

[tex]30\º-45\º=-15\º[/tex]

then

[tex]sin(30\º-45\º)=sin(30\º)*cos(45\º)-sin(45\º)*cos(30\º)[/tex]

[tex]\begin{Bmatrix}sin(30\º)&=&\frac{1}{2}\\\\sin(45\º)&=&cos(45\º)&=&\frac{\sqrt{2}}{2}}\end{matrix}\\\\cos(30\º)&=&\frac{\sqrt{3}}{2}\end{matrix}[/tex]

now we replace this values

[tex]sin(-15\º)=\frac{1}{2}*\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}*\frac{\sqrt{3}}{2}[/tex]

[tex]sin(-15\º)=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}[/tex]

[tex]\boxed{\boxed{sin(-15\º)=sin(345\º)=\frac{\sqrt{2}-\sqrt{6}}{4}}}[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.