Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let x = width of the deck.
Therefore total area of pool :
(10+2x)m*(20+2x)m = 704 m^2
( 200 + 20x + 40x + 4x^2 ) m^2 = 704 m^2
(200 + 60x + 4x^2) = 704
4x^2 + 60x = 704-200
4x^2 + 60x = 504
4x^2 + 60x - 504 = 0
4(x^2 + 15x - 126) = 0
(x+21) * (x-6) = 0
Therefore x, the deck's width is 6m (it can't be -21 as width is measured as a positive value)
Kindly press the Thank You button and indicate this as best answer if it answers your question correctly. Thanks.
Therefore total area of pool :
(10+2x)m*(20+2x)m = 704 m^2
( 200 + 20x + 40x + 4x^2 ) m^2 = 704 m^2
(200 + 60x + 4x^2) = 704
4x^2 + 60x = 704-200
4x^2 + 60x = 504
4x^2 + 60x - 504 = 0
4(x^2 + 15x - 126) = 0
(x+21) * (x-6) = 0
Therefore x, the deck's width is 6m (it can't be -21 as width is measured as a positive value)
Kindly press the Thank You button and indicate this as best answer if it answers your question correctly. Thanks.
[tex]S = 704 \ m^2 \\width \ of \ the \ deck - x \\ \\S=a \cdot b \\ \\ (10+2x)(20+2x) = 704 \\ \\ 200+20x +40x+4x^2-704 =0\\ \\4x^2 +60x -504=0\ \ /:4[/tex]
[tex]x^2+15x -126=0\\ \\a=1, \ b=15 , \ c= - 126 \\ \\\Delta =b^2-4ac = 15^2 -4\cdot1\cdot (-126) = 225 +504=729 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-15-\sqrt{729}}{2 }=\frac{ -15-27}{2}=\frac{-42}{2}=-21 \ can \ not\ be \ negative \\ \\x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-15+\sqrt{729}}{2 }=\frac{ -15+27}{2}= 6 \ m \\ \\ Answer : \ waist \ width \ is \ 6 \ m[/tex]
[tex]x^2+15x -126=0\\ \\a=1, \ b=15 , \ c= - 126 \\ \\\Delta =b^2-4ac = 15^2 -4\cdot1\cdot (-126) = 225 +504=729 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-15-\sqrt{729}}{2 }=\frac{ -15-27}{2}=\frac{-42}{2}=-21 \ can \ not\ be \ negative \\ \\x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-15+\sqrt{729}}{2 }=\frac{ -15+27}{2}= 6 \ m \\ \\ Answer : \ waist \ width \ is \ 6 \ m[/tex]

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.