Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Volume of cube, V = edge^3
Let edge of cube#1 = (x-4) m, therefore volume of cube#1, v1 = (x-4)^3 m
Let edge of cube#2 = x m, therefore volume of cube#2, v2 = x^3 m
Diff. in volume (in m) = 1216 = v2-v1 = [ x^3 - (x-4)^3 ]
= x^3 - [(x-4)(x-4)(x-4)]
= x^3 - [x^2 - 8x +16(x - 4)]
= x^3 - [ x^3 - 12x^2 + 48x - 64 ]
= 12x^2 - 48x + 64
= 4 (3x^2 - 12x + 16)
Therefore 4 (3^2 - 12x + 16) = 1216
3x^2 - 12x + 16 = 1216/4 = 304
3x^2 - 12x - 288 = 0
3 (x^2 - 4x - 96) = 0
(x^2 - 4x - 96) = 0
(x - 12) (x + 8) =0
(x-12) = 0
Therefore x = 12 m
Edge of cube#2 = x m = 12m
Edge of cube#1 = (x-4) m = 8m
Let edge of cube#1 = (x-4) m, therefore volume of cube#1, v1 = (x-4)^3 m
Let edge of cube#2 = x m, therefore volume of cube#2, v2 = x^3 m
Diff. in volume (in m) = 1216 = v2-v1 = [ x^3 - (x-4)^3 ]
= x^3 - [(x-4)(x-4)(x-4)]
= x^3 - [x^2 - 8x +16(x - 4)]
= x^3 - [ x^3 - 12x^2 + 48x - 64 ]
= 12x^2 - 48x + 64
= 4 (3x^2 - 12x + 16)
Therefore 4 (3^2 - 12x + 16) = 1216
3x^2 - 12x + 16 = 1216/4 = 304
3x^2 - 12x - 288 = 0
3 (x^2 - 4x - 96) = 0
(x^2 - 4x - 96) = 0
(x - 12) (x + 8) =0
(x-12) = 0
Therefore x = 12 m
Edge of cube#2 = x m = 12m
Edge of cube#1 = (x-4) m = 8m
[tex]a- the\ edge\ of\ the\ smaller\ cube\ \ \ \wedge\ \ \ a>0\\V_a-the\ volume\ of\ the\ smaller\ cube\ \ \ \Rightarrow\ \ \ V_a=a^3\\ \\(a+4)^3-a^3=1216\ \ \ \wedge\ \ \ (x+y)^3=x^3+3x^2\cdot y+3x\cdot y^2+y^3\\ \\a^3+3a^2\cdot 4+3a\cdot 4^2+4^3-a^3=1216\\ \\12a^2+48a+64-1216=0\ \ \ \Rightarrow\ \ \ 12a^2+48a-1152=0\ /:12\\ \\a^2-4a-96=0\ \ \ \Rightarrow\ \ \ \Delta=(-4)^2-4\cdot 1\cdot(-96)=16+384=400\\ \\ \sqrt{\Delta} =20\\ \\a_1= \frac{4-20}{2\cdot1} =-8<0,\ \ \ a_2= \frac{4+20}{2\cdot1} =12>0[/tex]
[tex]Ans.\ The\ edge\ of\ the\ smaller\ cube=12\ m[/tex]
[tex]Ans.\ The\ edge\ of\ the\ smaller\ cube=12\ m[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.