Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The edge of one cube is 4 m shorter than the edge of a second cube. The volumes of the two cubes differ by 1216 m^3. Find the edge of the smaller cube.

Sagot :

Volume of cube, V = edge^3
Let edge of cube#1 = (x-4) m, therefore volume of cube#1, v1 = (x-4)^3 m
Let edge of cube#2 = x m, therefore volume of cube#2, v2 = x^3 m
Diff. in volume (in m) = 1216 = v2-v1 = [ x^3 - (x-4)^3 ] 
= x^3 - [(x-4)(x-4)(x-4)]
= x^3  - [x^2 - 8x +16(x - 4)]
 x^3 - [ x^3 - 12x^2 + 48x - 64 ]
= 12x^2 - 48x + 64
= 4 (3x^2 - 12x + 16)
Therefore 4 (3^2 - 12x + 16) = 1216
3x^2 - 12x + 16 = 1216/4 = 304
3x^2 - 12x - 288 = 0
3 (x^2 - 4x - 96) = 0
(x^2 - 4x - 96) = 0
(x - 12) (x + 8) =0
(x-12) = 0
Therefore x = 12 m 
Edge of cube#2 = x m = 12m
Edge of cube#1 = (x-4) m = 8m
[tex]a- the\ edge\ of\ the\ smaller\ cube\ \ \ \wedge\ \ \ a>0\\V_a-the\ volume\ of\ the\ smaller\ cube\ \ \ \Rightarrow\ \ \ V_a=a^3\\ \\(a+4)^3-a^3=1216\ \ \ \wedge\ \ \ (x+y)^3=x^3+3x^2\cdot y+3x\cdot y^2+y^3\\ \\a^3+3a^2\cdot 4+3a\cdot 4^2+4^3-a^3=1216\\ \\12a^2+48a+64-1216=0\ \ \ \Rightarrow\ \ \ 12a^2+48a-1152=0\ /:12\\ \\a^2-4a-96=0\ \ \ \Rightarrow\ \ \ \Delta=(-4)^2-4\cdot 1\cdot(-96)=16+384=400\\ \\ \sqrt{\Delta} =20\\ \\a_1= \frac{4-20}{2\cdot1} =-8<0,\ \ \ a_2= \frac{4+20}{2\cdot1} =12>0[/tex]

[tex]Ans.\ The\ edge\ of\ the\ smaller\ cube=12\ m[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.