Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The (a) resting membrane potential is a result of different concentrations of Na+ and K+ ions inside and outside the cell. A nerve impulse causes Na+ to enter the cell, resulting in (b) depolarization. At the peak action potential, K+ channels open and the cell becomes (c) hyperpolarized.
Neurons are the functional unit of the nervous system, which relays the information between the brain and different parts of the body. The action potential and resting potential are the mechanisms of the neuron to transmit the message.
The correct answer is:
Option B. Active transport of sodium and potassium ions.
The active transport of ions is defined as the transport against the concentration gradient, in which a molecule of energy is spent.
The resting potential of the neuron is defined as the difference in the voltage across the membrane of the cell. The resting potential in neurons is developed by the sodium-potassium pump.
The active transport of sodium and potassium is defined as the transport of 2 potassium ions inside of the cell and pumping of 3 sodium ions outside the cell at cost of 1 ATP molecule.
Thus, option B is correct.
To know more about the sodium-potassium pump, refer to the following link:
https://brainly.com/question/25288432
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.