Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
An absolute value graph is simply two straight lines leading to one point and going out to infinity in a "v" shape. This is because the y value is the absolute value of the x value, meaning the y value is always positive. For [tex]y=|x|[/tex], the two components are lines [tex]y=-x[/tex] from [tex](- \infty,0][/tex] and [tex]y=x[/tex] from from [tex][ 0,\infty)[/tex]. The graph of [tex]y=|x|[/tex] is shown in the first picture.
As you probably know, the slope intercept form for a line is y=mx+b, where m is the slope and b is the y-intercept. In the equation [tex]f(x)=-|x|-2[/tex], the y-intercept is -2. This moves the entire graph down two units. Also, |x| is negative in this equation. This flips the "v" over, making the graph appear as the second picture shows.
As you probably know, the slope intercept form for a line is y=mx+b, where m is the slope and b is the y-intercept. In the equation [tex]f(x)=-|x|-2[/tex], the y-intercept is -2. This moves the entire graph down two units. Also, |x| is negative in this equation. This flips the "v" over, making the graph appear as the second picture shows.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.