Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The Earth has a radius of 6,400 kilometers. A satellite orbits the Earth at a distance of 12,800 kilometers from the center of the Earth. If the weight of the satellite on Earth is 100 kilonewtons, the gravitational force on the satellite in orbit is?
It would be great if you could add a few words of explanation.


Sagot :

By using a universal gravitational force, we can get that [tex] F_{g} = \frac{G. m_{1} . m_{2}}{ r^{2} } [/tex]. 

For note : r is a distance from center of the earth to the object.

Then, if [tex] r_{1} [/tex] is 6.400 km, and if [tex] r_{2} [/tex] is 12.800 km,
we can say that [tex] r_{2} [/tex] is [tex]2r_{1}[/tex]

In first equation we can say that :
[tex]F_{g} = \frac{G.m_{1} m_{2} }{ r_{1}^{2} } = 100.000 N[/tex]

then in second equation we can say that :
[tex]F_{g} = \frac{G.m_{1} m_{2} }{ r_{2}^{2} } [/tex], 
[tex]F_{g} = \frac{G.m_{1} m_{2} }{ (2r_{1})^{2} }[/tex] (because [tex] r_{2} [/tex] is [tex]2r_{1}[/tex] )
[tex]F_{g} = \frac{G.m_{1} m_{2} }{ 4r_{1}^{2} }[/tex], 
we can say that : [tex]F_{g} = \frac{1}{4} \frac{G.m_{1} m_{2} }{ r_{1}^{2} }[/tex]
so, by plugging first equation into second equation, we can get
[tex]F_{g} = \frac{1}{4} \frac{G.m_{1} m_{2} }{ r_{1}^{2} } = \frac{1}{4} . 100.000 N = 25.000 N[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.