At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
f(x) = x² + 5x - 2
f(x) + 2 = x² + 5x - 2 + 2
f(x) + 2 = x² + 5x
f(x) + 2 = x(x) + x(5)
f(x) + 2 = x(x + 5)
f(x) = x(x + 5) - 2
(h, k) = (-5, 2)
f(x) + 2 = x² + 5x - 2 + 2
f(x) + 2 = x² + 5x
f(x) + 2 = x(x) + x(5)
f(x) + 2 = x(x + 5)
f(x) = x(x + 5) - 2
(h, k) = (-5, 2)
The function in vertex form is [tex](x-\frac{5}{2} )^{2} -\frac{33}{4}[/tex] and the vertex (h,k) is (-2.5,-8.25).
What is Completing the Square method?
Completing the Square is a technique which can be used to find maximum or minimum values of quadratic functions. It is a method used to solve a quadratic equation by changing the form of the equation so that the left side is a perfect square trinomial .
For the given situation,
The function is f(x)=x^2+5x-2.
Plot this function on the graph as shown, this gives the vertex of the function.
The vertex of the function using completing the square method is
⇒ [tex]f(x)=x^2+5x-2[/tex]
Take the coefficient of x and perform the operation,
⇒ [tex](\frac{5}{2}) ^{2} = \frac{25}{4}[/tex]
Now add and subtract this value in the above equation,
⇒ [tex](x^{2} +5x+\frac{25}{4} )-2-\frac{25}{4}[/tex]
⇒ [tex](x-\frac{5}{2} )^{2} -\frac{33}{4}[/tex]
On comparing this equation with the equation in vertex form, we get
⇒ [tex]h=\frac{-5}{2}=-2.5[/tex] and
⇒ [tex]k=-\frac{33}{4}=-8.25[/tex]
⇒ [tex]a=1[/tex]
Hence we can conclude that the function in vertex form is [tex](x-\frac{5}{2} )^{2} -\frac{33}{4}[/tex] and the vertex (h,k) is (-2.5,-8.25).
Learn more about completing the square method here
https://brainly.com/question/2055939
#SPJ2

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.