At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given [tex]\cos\alpha=\frac{8}{17}[/tex], [tex]\alpha[/tex] is in Quadrant IV, [tex]\sin\beta=-\frac{24}{25}[/tex], and [tex]\beta[/tex] is in Quadrant III, find [tex]\sin(\alpha-\beta)[/tex]
We can use the angle subtraction formula of sine to answer this question.
[tex]\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta[/tex]
We already know that [tex]\cos\alpha=\frac{8}{17}[/tex].
We can use the Pythagorean identity [tex]\sin^2\theta+\cos^2\theta=1[/tex] to find [tex]\sin\alpha[/tex].
[tex]\sin^2\alpha+(\frac{8}{17})^2=1 \\ \sin^2\alpha+\frac{64}{289}=1 \\ \sin^2\alpha=\frac{225}{289} \\ \\\sin\alpha=\pm\frac{15}{17}[/tex]
Since [tex]\alpha[/tex] is in Quadrant IV, and sine is represented as y value on the unit circle, we must assume the negative value [tex]\sin\alpha=-\frac{15}{17}[/tex].
As similar process is then done with [tex]\sin\beta=-\frac{24}{25}[/tex].
[tex](-\frac{24}{25})^2+\cos^2\beta=1 \\ \frac{576}{625}+\cos^2\beta=1 \\ \cos^2\beta=\frac{49}{625} \\ \\\cos\beta=\pm\frac{7}{25}[/tex]
And since [tex]\beta[/tex] is in Quadrant III, and cosine in represented as x value on the unit cercle, we must assume the negative value [tex]\cos\beta=-\frac{7}{25}[/tex].
Now we can fill in our angle subtraction formula!
[tex]\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta \\\\ \sin(\alpha-\beta)=(-\frac{15}{17}\times-\frac{7}{25})-(\frac{8}{17}\times-\frac{24}{25}) \\\\\sin(\alpha-\beta)=\frac{105}{425}-(-\frac{192}{425}) \\\\ \boxed{\sin(\alpha-\beta)=\frac{297}{425}}[/tex]
We can use the angle subtraction formula of sine to answer this question.
[tex]\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta[/tex]
We already know that [tex]\cos\alpha=\frac{8}{17}[/tex].
We can use the Pythagorean identity [tex]\sin^2\theta+\cos^2\theta=1[/tex] to find [tex]\sin\alpha[/tex].
[tex]\sin^2\alpha+(\frac{8}{17})^2=1 \\ \sin^2\alpha+\frac{64}{289}=1 \\ \sin^2\alpha=\frac{225}{289} \\ \\\sin\alpha=\pm\frac{15}{17}[/tex]
Since [tex]\alpha[/tex] is in Quadrant IV, and sine is represented as y value on the unit circle, we must assume the negative value [tex]\sin\alpha=-\frac{15}{17}[/tex].
As similar process is then done with [tex]\sin\beta=-\frac{24}{25}[/tex].
[tex](-\frac{24}{25})^2+\cos^2\beta=1 \\ \frac{576}{625}+\cos^2\beta=1 \\ \cos^2\beta=\frac{49}{625} \\ \\\cos\beta=\pm\frac{7}{25}[/tex]
And since [tex]\beta[/tex] is in Quadrant III, and cosine in represented as x value on the unit cercle, we must assume the negative value [tex]\cos\beta=-\frac{7}{25}[/tex].
Now we can fill in our angle subtraction formula!
[tex]\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta \\\\ \sin(\alpha-\beta)=(-\frac{15}{17}\times-\frac{7}{25})-(\frac{8}{17}\times-\frac{24}{25}) \\\\\sin(\alpha-\beta)=\frac{105}{425}-(-\frac{192}{425}) \\\\ \boxed{\sin(\alpha-\beta)=\frac{297}{425}}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.